Chứng minh rằng : \(\frac{1}{5}\) + \(\frac{1}{7}\) + \(\frac{1}{9}\) + ... + \(\frac{1}{101}\) ko là số tự nhiên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy đồng A ta có:
A = \(\frac{7.9.11...101+5.9.11...101+...+5.7.9...99}{5.7.9...101}\)
Nhận xét:
Các tích 7.9.11...101;....; 5.7.9...97.101 đều chia hết cho 101 nhưng 5.7.9....99 không chia hết cho 101 nên A có tử số không chia hết cho 101
Mà mẫu chia hết cho 101; 101 là số nguyên tố
=> Tử không chia hết cho mẫu
=> A là phân số
1/5+1/7+1/9+...+1/101 > 1/101+1/101+1/101+...+1/101
1/5+1/7+1/9+...+1/101 > 97/101
97/101 < 1
=> 1/5+1/7+1/9+...+1/101 không là số tự nhiên
http://sachgiai.com/book/toan-hoc/sach-giai-toan-lop-8-tap-1-page65.html
\(S=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{101}>\frac{1}{101}+\frac{1}{101}+\frac{1}{101}+...\frac{1}{101}\)(97 phân số\(\frac{1}{101}\))
\(S=\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+...+\frac{1}{101}>\frac{97}{101}\)\(\Rightarrow S< 1\)
Do \(0< S< 1\)nên \(S\)không phải là số tự nhiên
A= 1/5.7 + 1/7.9 +... + 1/99 . 101
A= 1/5 -1/7 + 1/7 - 1/9 + ......... + 1/99 - 1/101
A= 1/5 - 1/101 = 1/116
=> A ko là số tự nhiên
\(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+.....+\frac{1}{101}\)
\(=\frac{1}{2+3}+\frac{1}{3+4}+\frac{1}{4+5}+....+\frac{1}{50+51}\)
Anh quên mất đoạn sau rồi , nhưng hình như đến đây kl là được rồi đấy