Kí hiệu số nguyên tố thứ n là pn ( n ở dưới ) . Chứng minh rằng pn<3n với n>12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
- Vì A là tích của n số nguyên tố đầu tiên nên A chia hết cho 2 và A không chia hết cho 4 (*)
- Giả sử A+1 là số chính phương . Đặt A+1 = m2 (m∈N)
Vì A chẵn nên A+1 lẻ => m2 lẻ => m lẻ.
Đặt m = 2k+1 (k∈N).
Ta có m2 = =(2k+1)2=4k2 + 4k + 1
=> A+1 = 4k2 + 4k + 1
=> A = 4k2 + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy A+1 không là số chính phương
- Ta có: A = 2.3.5… là số chia hết cho 3 (n>1)
=> A-1 có dạng 3x+2. (x\(\in\)N)
Vì không có số chính phương nào có dạng 3x+2 nên A-1 không là số chính phương .
Vậy nếu A là tích n số nguyên tố đầu tiên (n>1) thì A-1 và A+1 không là số chính phương (đpcm)