Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(p^n+144=a^2\left(a\in N\right)\)
\(\Rightarrow p^n=\left(a-12\right)\left(a+12\right)\)
Ta thấy : \(a-12+a+12=2a⋮2\)
\(\Rightarrow\left(a-12\right)\left(a+12\right)⋮2\)
\(\Rightarrow p^n⋮2\) mà $p$ nguyên tố \(\Rightarrow p=2\)
Khi đó ta có : \(2^n=\left(a-12\right)\left(a+12\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2^x=a-12\\2^y=a+12\end{matrix}\right.\) với $x+y=a; x,y \in N$, \(y>x\)
\(\Rightarrow2^y-2^x=24\Rightarrow2^x\left(2^{y-x}-1\right)=24\)
Rồi bạn xét các TH để tìm ra giá trị đề bài nhé! Đến đây dễ rồi.
Gọi UCLN ( 3n+1 và 4n+1) là d
Ta có: 3n+1 chia hết cho d
4n+1 chia hết cho d
=> 4(3n+1) chai hết cho d
=> 3(4n+1) chia hết cho d
=> 12n+4 chia hết cho d
=> 12n+3 chai hết cho d
=> 12n=4- 12n+3 chia hết cho d
=> 1 chia hết cho d
=> d thuộc U(1)
=> d=1
=> đpcm
gọi UCLN(3n+1;4n+1) là d
=>3n+1 chia hết cho d=>4(3n+1) chia hết cho d => 12n+4 chia hết cho d
=>4n+1 chia hết cho d => 3(4n+1) chia hết cho d => 12n+3 chia hết cho d
=>(12n+4)-(12n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(3n+1;4n+1)=1
=>nguyên tố cùng nhau
Vì 2n+1 là số nguyên tố với n > 2
=> ta có: 2n+1-1 = 2n => chia hết cho 2 => 2n+1 là nguyên tố thì 2n-1 là hợp số (đpcm)