cho tam giác ABC có AB=AC, AM là tia phan giác của BÂC
a)Chứng minh : BM= MC
b) Chứng minh AM vuông góc với BC
mọi người giúp mình với, mình cần gấp ngay bây giờ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: AB = AC
\(\Rightarrow\Delta ABC\) cân tại A.
Mà tia phân giác của góc cân đồng thời cắt cạnh đối tại trung điểm của nó.
Vậy: BM = MC.
b. Xét 2\(\Delta\): \(\Delta ABM\) và \(\Delta ACM\) có:
\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\\widehat{BAM}=\widehat{CAM}\left(gt\right)\\AM.chung\end{matrix}\right.\)
\(\Rightarrow\) \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)
Vậy \(\widehat{AMB}=\widehat{AMC}\)
Mà: \(\widehat{BMC}=180^o\)
Vậy: \(\widehat{AMB}=90^o\) hay \(AM\perp BC\)
a) Xét tam giác ABM và tam giác ACM, ta có:
AB = AC (gt)
AM: cạnh chung
Góc BAM = góc CAM (do AM là tia phân giác của góc BAC)
=> tam giác ABM = tam giác ACM (c.g.c)
=> BM = MC (2 cạnh tương ứng) (đpcm)
b) Xét tam giác ABC, ta có:
AB = AC (gt)
=> tam giác ABC cân tại A
Mà AM là tia phân giác góc BAC
=> AM cũng là đường cao ứng với BC
=> AM vuông góc BC (đpcm)
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
hay BM=CM
b: Ta có; ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
d: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có
MB=MC
MH=MK
Do đó: ΔBHM=ΔCKM
Tham khảo:
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
hay BM=CM
b: Ta có; ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
ˆHAM=ˆKAMHAM^=KAM^
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
d: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có
MB=MC
MH=MK
Do đó: ΔBHM=ΔCKM
1.Xét tam giác AMB và tam giác AMC có:
\(AB=AC\);\(AM:\) (cạnh chung)
Do đó \(\Delta AMB=\Delta AMC\)(cạnh huyền-cạnh góc vuông)
2. \(\Delta AMB=\Delta AMC\Rightarrow\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng)
Suy ra AM là tia phân giác của góc A
3. Chứng minh tương tự.
a)xét tam giác AMB và tam giác AMC
AB=AC ( giả thiết )
AM cạnh chung
BM = CM (M là trung điểm cạnh BC)
Vậy tam giác AMB = tam giác AMC
b.ta có : tam giác ABC = tam giác BAM + tam giác MAC =180 (định lí tổng 3 góc )
Xuy ra : tam giác BAM = tam giác MAC = 180/2=90
Xuy ra : AM vuông góc BC
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
b: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔHBM=ΔKCN
Suy ra: HB=KC
c: Ta có: ΔHBM=ΔKCN
nên \(\widehat{HBM}=\widehat{KCN}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
hayΔOBC cân tại O