Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: AB = AC
\(\Rightarrow\Delta ABC\) cân tại A.
Mà tia phân giác của góc cân đồng thời cắt cạnh đối tại trung điểm của nó.
Vậy: BM = MC.
b. Xét 2\(\Delta\): \(\Delta ABM\) và \(\Delta ACM\) có:
\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\\widehat{BAM}=\widehat{CAM}\left(gt\right)\\AM.chung\end{matrix}\right.\)
\(\Rightarrow\) \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)
Vậy \(\widehat{AMB}=\widehat{AMC}\)
Mà: \(\widehat{BMC}=180^o\)
Vậy: \(\widehat{AMB}=90^o\) hay \(AM\perp BC\)
a) Xét tam giác ABM và tam giác ACM, ta có:
AB = AC (gt)
AM: cạnh chung
Góc BAM = góc CAM (do AM là tia phân giác của góc BAC)
=> tam giác ABM = tam giác ACM (c.g.c)
=> BM = MC (2 cạnh tương ứng) (đpcm)
b) Xét tam giác ABC, ta có:
AB = AC (gt)
=> tam giác ABC cân tại A
Mà AM là tia phân giác góc BAC
=> AM cũng là đường cao ứng với BC
=> AM vuông góc BC (đpcm)
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
hay BM=CM
b: Ta có; ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
d: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có
MB=MC
MH=MK
Do đó: ΔBHM=ΔCKM
Tham khảo:
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
hay BM=CM
b: Ta có; ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
ˆHAM=ˆKAMHAM^=KAM^
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
d: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có
MB=MC
MH=MK
Do đó: ΔBHM=ΔCKM
1.Xét tam giác AMB và tam giác AMC có:
\(AB=AC\);\(AM:\) (cạnh chung)
Do đó \(\Delta AMB=\Delta AMC\)(cạnh huyền-cạnh góc vuông)
2. \(\Delta AMB=\Delta AMC\Rightarrow\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng)
Suy ra AM là tia phân giác của góc A
3. Chứng minh tương tự.
a)xét tam giác AMB và tam giác AMC
AB=AC ( giả thiết )
AM cạnh chung
BM = CM (M là trung điểm cạnh BC)
Vậy tam giác AMB = tam giác AMC
b.ta có : tam giác ABC = tam giác BAM + tam giác MAC =180 (định lí tổng 3 góc )
Xuy ra : tam giác BAM = tam giác MAC = 180/2=90
Xuy ra : AM vuông góc BC
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
b: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔHBM=ΔKCN
Suy ra: HB=KC
c: Ta có: ΔHBM=ΔKCN
nên \(\widehat{HBM}=\widehat{KCN}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
hayΔOBC cân tại O