giúp m` câu này với
A=4/7*9 + 4/9*11 + 4/11*13 + ....... + 4/59*61
nhớ kèm theo cách giải nhé, cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-3/11.(-22)/66.121/15
=(-3).(-22).121
11.66.15
=11
15
3/7.2/5.7/3.20.19/72
=3.2.7.20.19
7.5.3.72
=76
16
6/7.8/13+6/13.9/7-3/13.6/7
=6/7.8/13+6/7.9/13-3/13.6/7
=6/7.(8/13+9/13-3/13)
=6/7.14/13
=12/13
-1/4.152/11+68/4.(-1)/11
=152/4.(-1)/11+68/4.(-1)/11
=(-1)/11.(152/4+68/4)
=(-1)/11.220/4
=-110/22
-5/7.2/11+(-5)/7.9/11+12/7
=-5/7.2/11+-5/7.9/11+12/7
=-5/7.(2/11+9/11)+12/7
=-5/7.1+12/7
=(-5)/7+12/7
=7/7
=1
146/13-(18/7+68/13)
=146/13-18/7-68/13
=(146/13-68/13)-18/7
=78/13-18/7
=6-18/7
=42/7-18/7
=24/7
\(A=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(\Leftrightarrow A=\frac{1}{1.3}-\frac{1}{11.13}=\frac{1}{3}-\frac{1}{143}=\frac{140}{429}\)
\(A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+\frac{4}{7.9.11}+\frac{4}{9.11.13}\)
\(\Rightarrow A=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(\Rightarrow A=\frac{1}{1.3}-\frac{1}{11.13}=\frac{1}{3}-\frac{1}{143}=\frac{140}{429}\)
\(\left(7\dfrac{4}{9}+4\dfrac{7}{11}\right)-3\dfrac{4}{9}\)
\(=\dfrac{67}{9}+\dfrac{51}{11}-\dfrac{31}{9}\)
\(=\dfrac{67}{9}-\dfrac{31}{9}+\dfrac{51}{11}\)
\(=4+\dfrac{51}{11}\)
\(=\dfrac{95}{11}\)
Chúc bạn học tốt
\(C=\frac{4}{9.11.13}+\frac{4}{11.13.15}+...+\frac{4}{59.61.63}\)
\(=2\left(\frac{2}{9.11.13}+\frac{2}{11.13.15}+...+\frac{2}{59.61.63}\right)\)
\(=2\left(\frac{1}{9.11}-\frac{1}{11.13}+\frac{1}{11.13}-\frac{1}{13.15}+...+\frac{1}{59.61}-\frac{1}{61.63}\right)\)
\(=2\left(\frac{1}{9.11}-\frac{1}{61.63}\right)\)
\(=2.\frac{416}{42273}\)
\(=\frac{832}{42273}\)
\(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^{19}}\)
\(\Leftrightarrow\)\(\frac{3^2.\left(2^2\right)^2.2^{16.2}}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^{19}}\)
\(\Leftrightarrow\)\(\frac{2^4.2^{32}.3^2}{11.2^{35}-2^{76}}\)
\(\Leftrightarrow\)\(\frac{2^{36}.3^2}{2^{35}.\left(11-2^{41}\right)}\)
\(\Leftrightarrow\)\(\frac{2.3^2}{11-2^{41}}\)
Hết biết giải rồi
\(A=\frac{4}{7\cdot9}+\frac{4}{9\cdot11}+...+\frac{4}{59\cdot61}=2\cdot\left(\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+...+\frac{2}{59\cdot61}\right)\)
\(=2\cdot\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{59}-\frac{1}{61}\right)=2\cdot\left[\left(\frac{1}{7}-\frac{1}{61}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+...+\left(\frac{1}{59}-\frac{1}{59}\right)\right]\)\(=2\cdot\left[\left(\frac{61}{427}-\frac{7}{427}\right)+0+...+0\right]=2\cdot\frac{54}{427}=\frac{108}{427}\)
Cách làm thì đúng rồi nhưng mk k chắc tính đúng, nhẩm thôi
xl bạn nhé nhưng bạn hiểu nhầm r ( chắc do mình ) nó là \(\frac{4\cdot9}{7}\)nhé bạn =))