Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ đường cao AH vuông góc vs BC(H thuộc BC)
\(sinB=\dfrac{AH}{AB}\Rightarrow AH=66,7\\ sinC=\dfrac{AH}{AC}\Rightarrow AC=68\)
=>đáp án A
\(C=180^0-\left(A+B\right)=77^04'\)
Áp dụng định lý hàm sin:
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{AB.sinB}{sinC}=\dfrac{117.sin34^044'}{sin77^04'}\approx68,4\)
\(\widehat{BAD}=\widehat{B}+\widehat{C}\)
\(\widehat{ABD}=\frac{180^o-\widehat{BAD}}{2}=90^o-\frac{\widehat{B}+\widehat{C}}{2}\)
\(\widehat{CBD}=\widehat{B}+\widehat{ABD}=\widehat{B}+90^o-\frac{\widehat{B}+\widehat{C}}{2}=90^o+\frac{\widehat{B}-\widehat{C}}{2}=90^o+\frac{\alpha}{2}\)
Diện tích tam giác ABC là :
25 x 20 : 2 = 250 ( cm2 )
Ta thấy đoạn thẳng kẻ từ A vuông góc với đáy BC là chiều cao của hình tam giác ABC
Cạnh đáy BC có độ dài là :
250 x 2 : 16 = 31,25 ( cm )
Chu vi tam giác ABC là :
25 + 20 + 31,25 = 76,25 ( cm )
Đáp số : 76,25 cm
a) Xét \(\Delta ABC\)và \(\Delta HBA\), ta có:
\(\widehat{B}\)chung, \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)
\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)(đpcm)
b) \(\Delta ABC\)vuông tại A \(\Rightarrow BC^2=AB^2+AC^2\)\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=\sqrt{900+1600}=\sqrt{2500}=50\left(cm\right)\)
Ta có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{30.40}{50}=24\left(cm\right)\)
Vậy \(AH=24cm\)
a, Ta có AD/BD=1/2
=> AD/AB=1/3
Lại có AB = 6cm
=>AD=2cm
Do DE//BC
=> tam giác ADE đồng dạng tam giác ABC
=>\(\frac{AD}{AB}\)=\(\frac{AE}{AC}\)
hay \(\frac{2}{6}\)=\(\frac{AE}{9}\)
=> AE=3
b, S ABC= \(\frac{1}{2}\)AB.AC=3.9=27 \(^{ }cm2\)
S ADE= \(\frac{1}{2}\)AD.AE=1.3=3 cm2
=> S EDBC= S ABC- S ADE=27-3=24 cm2
a/ Gọi AM, BN là hai đường trung tuyến của tg ABC (M thuộc BC; N thuộc AC), giao của AM và BN là G
Theo tính chất đường phân giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy
\(\frac{AD}{CD}=\frac{AB}{BC}\Rightarrow\frac{AD}{AB}=\frac{CD}{BC}=\frac{AD+CD}{AB+BC}=\frac{AC}{AB+BC}=\frac{6}{5+7}=\frac{1}{2}\)
\(\Rightarrow\frac{AD}{AB}=\frac{AD}{5}=\frac{1}{2}\Rightarrow AD=2,5cm\)
b/ Xét tg ABD có
\(\frac{OD}{OB}=\frac{AD}{AB}=\frac{2,5}{5}=\frac{1}{2}\) (tính chất đường phân giác trong tam giác) (1)
Ta lại có G là trọng tâm của tg ABC nên
\(\frac{GN}{BN}=\frac{1}{3}\Rightarrow\frac{GN}{GB}=\frac{1}{2}\) (2)
Xét tg BDN, từ (1) và (2) \(\Rightarrow\frac{OD}{OB}=\frac{GN}{GB}=\frac{1}{2}\) => OG//DN (Định lý talet đảo trong tam giác)
Mà DN thuộc AC => OG//AC (dpcm)
Lời giải:
$\widehat{C}=180^0-68^012'-34^044'=77^04'$
Áp dụng công thức: \(\frac{AC}{\sin B}=\frac{AB}{\sin C}\)
\(\Leftrightarrow \frac{AC}{\sin 34^044'}=\frac{117}{\sin 77^004'}\Rightarrow AC=68,4\)
Đáp án A.