Tính giá trị biểu thức: m= 2x2 - 3x + 1 với |x=1/2|
Help me, please!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
|x+1/3|=2/3
⇒x+1/3=2/3 hoặc x+1/3=-2/3
x=1/3 hoặc x=-1
+)TH1: (nếu như có ngoặc)
Khi x=1/3:
A=(1/3)2-3.(1/3)+1
A=1/9
Khi x=-1
A=(-1)2-3.(-1)+1
A=5
+)TH2: (nếu x ko có ngoặc)
Khi x=-1
A=-12-3.-1+1
A=3
Trường hợp này chỉ có -1 vì 1/3 2 =1/9 ; còn ko có ngoặc hay có ngoặc còn tùy thuộc vào đề bài và cách suy nghĩ của bạn nhé!
Chúc bạn học tốt!
(8x3 – 4x2) : (2x2) – (4x2 – 3x ) : x + 2x
= 4x – 2 – (4x – 3) + 2x = 4x – 2 – 4x + 3 + 2x = 2x + 1
Thay x = -1, ta được: 2.(-1) + 1 = -1
S = ( 1 - \(\dfrac{1}{2^2}\))(1-\(\dfrac{1}{3^2}\))(1-\(\dfrac{1}{4^2}\))....(1-\(\dfrac{1}{50^2}\))
S = \(\dfrac{2^2-1}{2^2}\).\(\dfrac{3^2-1}{3^2}\).\(\dfrac{4^2-1}{4^2}\)...\(\dfrac{50^2-1}{50^2}\)
Vì em lớp 6 nên phải làm thêm bước này nữa:
Ta có
n2 - 1 = n2 - n + n - 1 = (n2 - n) + (n - 1) = n(n-1) + (n-1) =(n-1)(n+1)
Áp dụng công thức vừa chứng minh trên vào tổng S ta có:
S = \(\dfrac{\left(2-1\right)\left(2+1\right)}{2^2}\).\(\dfrac{\left(3-1\right)\left(3+1\right)}{3^2}\)....\(\dfrac{\left(50-1\right)\left(50+1\right)}{50^2}\)
S = \(\dfrac{1.3}{2^2}\).\(\dfrac{2.4}{3^2}\)......\(\dfrac{49.51}{50^2}\)
S = \(\dfrac{\left(3.4.5.6....49\right)^2.1.2.50.51}{\left(3.4.5.6...49\right)^2.2.2.50.50}\)
S = \(\dfrac{1}{2}\) . \(\dfrac{51}{50}\)
S = \(\dfrac{51}{100}\)
Câu 2:
\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)
Tập này có 3 phần tử nguyên
\(Bài.44:\\ a,3x-7=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\dfrac{7}{3}\\ b.2x^2+9=0\\ \Leftrightarrow x^2=-\dfrac{9}{2}\left(vô.lí\right)\\ \Rightarrow Không.có.x.thoả.mãn\)
43:
a: \(A=2x\left(x^2-2x-3\right)-6x^2+5x-1+9x^2+3x+3\)
\(=2x^3-4x^2-6x+3x^2+8x+2\)
\(=2x^3-x^2+2x+2\)
b: \(\dfrac{A}{2x-1}=\dfrac{x^2\left(2x-1\right)+2x-1+3}{2x-1}=x^2+1+\dfrac{3}{2x-1}\)
Thương là x^2+1
Dư là 3
c: A chia hết cho 2x-1
=>3 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;3;-3}
=>x thuộc {1;0;2;-1}
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)
\(4x^2-28x+49=\left(2x\right)^2-2\cdot2x\cdot7+7^2=\left(2x-7\right)^2\)
Khi x=4 thì \(4x^2-28x+49=\left(2x-7\right)^2=\left(2\cdot4-7\right)^2=1\)
Tính giá trị của biểu thức sau:
a) A = 2x2 - y2 tại x = -1; y = 2
Thay x = - 1 và y = 2 ta có:
A = 2 . ( - 1 ) 2 - 22 = -2
Vậy tại x = -1; y = 2 thì giá trị của biểu thức là - 2
b) B = 3x + 5xy2 tại x = 1; y = -2
Thay x = 1 và y = - 2 ta có:
B = 3 .1 + 5 . 1 . ( - 2 )2 = 23
Vậy tại x = 1; y = - 2 thì giá trị của biểu thức là 23