giải bất phương trình sau :\(\dfrac{2x^3+3x}{7-2x}>\sqrt{2-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-3\ge0\\2x^2-3x+1\ge0\\x^2+2x-3\le2x^2-3x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le\dfrac{1}{2}\end{matrix}\right.\\x^2-5x+4\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\\\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x\le-3\\x\ge4\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12x+8+7-14x}{4\left(1-2x\right)}-\dfrac{3}{4}\ge0\)
\(\Leftrightarrow\dfrac{-2x+15-3+6x}{4\left(1-2x\right)}\ge0\Leftrightarrow\dfrac{4x+12}{4\left(1-2x\right)}\ge0\)
TH1 : \(\left\{{}\begin{matrix}4x+12\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\le\dfrac{1}{2}\end{matrix}\right.\)<=> -3 =< x =< 1/2
TH2 : \(\left\{{}\begin{matrix}x\le-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\)* vô lí *
ĐKXĐ: \(x\ge2\)
\(\dfrac{\left(\sqrt{3x-5}-\sqrt{x-2}\right)\left(\sqrt{3x-5}+\sqrt{x-2}\right)}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)
\(\Leftrightarrow\dfrac{2x-3}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\Rightarrow x=\dfrac{3}{2}\left(ktm\right)\\\sqrt{3x-5}+\sqrt{x-2}=3\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow\sqrt{3x-5}-2+\sqrt{x-2}-1=0\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)}{\sqrt{3x-5}+2}+\dfrac{x-3}{\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}\right)=0\)
\(\Leftrightarrow x-3=0\) (do \(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}>0;\forall x\ge2\))
\(\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\)
ĐKXĐ: \(x\le2\)
Xét trên miền xác định:
\(\Leftrightarrow\dfrac{2x^3+3x}{7-2x}-1+1-\sqrt{2-x}>0\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(2x^2+2x+7\right)}{7-2x}+\dfrac{x-1}{1+\sqrt{2-x}}>0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{2x^2+2x+7}{7-2x}+\dfrac{1}{1+\sqrt{2-x}}\right)>0\)
\(\Leftrightarrow1< x\le2\)