Số các giá trị của n thỏa mãn 2n-1 là ước của 25 là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+4 là ước của 2n+3 \(\Rightarrow2n+3⋮n+4\)
\(\dfrac{2n+3}{n+4}=\dfrac{2n+8-5}{n+4}=\dfrac{2\left(n+4\right)-5}{n+4}=2-\dfrac{5}{n+4}\)
=> n+4 phải là ước của 5
\(\Rightarrow n+4=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-9;-5;-3;1\right\}\)
Chọn B
Cách giải: Ta có:
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)