cho tam giac abc co goc a =2 *goc bva goc b =2* goc c .chung minh bc^2=ac^2+ac*ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
a, gọi I là giao điểm của AH và BK
xét tam giácABI và tam giác HBI có
BI cạnh chung
\(\widehat{ABI}\)=\(\widehat{HBI}\)(gt)
\(\Rightarrow\)tam giác ABI= tam giác HBI (cạnh góc vuông-góc nhọn)
suy raBA=BH
b, xét tam giác ABK và tam giác HBK có
AB=BH
\(\widehat{ABK}\)=\(\widehat{HBK}\)(gt)
BK cạnh chung
suy ra tam giác ABK=tam giac HBK(c.g.c)
\(\Rightarrow\)\(\widehat{A}\)=\(\widehat{BHK}\)=90 độ suy ra tam giác BHK vuông
c,vì AB=BH nên tam giác ABH là tam giác cân tại B
Bài 2.
Tam giác BHC vuông tại H
=> \(\widehat{CBH}=90^o-\widehat{BCH}\)
=> 2\(\widehat{CBH}=180^o-2.\widehat{BCH}=180^o-2.\widehat{BCA}\)(1)
Ta lại có: \(\widehat{BAC}=180^o-\left(\widehat{ABC}+\widehat{BCA}\right)=180^o-2.\widehat{BCA}\)(2)vì tam giác ABC cân tại A
Từ (1), (2)=> dpcm
a) ta có AB=AC
=> TAM GIÁC ABC CÂN TẠI A
=> B=C
XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ
AB = AC(GT)
B = C (CMT)
BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)
=> TAM GIÁC ABM = TAM GIÁC ACM (C-G-C)
B) XÉT \(\Delta AMC\)VÀ \(\Delta EMB\)CÓ
\(BM=MC\left(GT\right)\)
\(\widehat{AMC}=\widehat{EMB}\)(ĐỐI ĐỈNH)
\(MA=ME\left(GT\right)\)
\(\Rightarrow\Delta AMC=\Delta EMB\left(C-G-C\right)\)
\(\Rightarrow\widehat{BEA}=\widehat{CAE}\)HAI GÓC TƯƠNG ỨNG
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
\(\Rightarrow AC//BE\)
A B C H D E I 1 2 1 2 5 5 8
a) Xét 2 tam giác vuông AHB và tam giác AHC có:
AB = AC (gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)
=>HB = HC (2 cạnh tương ứng)
=> góc A1= góc A2 (2 góc tương ứng)
b) Ta có : BC = HB + HC
mà HB = HC (cmt)
BC = 8 (cm)
=> HB = HC = BC/2 = 8/2= 4 (cm)
Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:
AB^2 = AH^2 + HB^2
hay 5^2 = AH^2 + 4^2
=> AH = 5^2 - 4^2 =25 - 16= 9
=> AH = căn bậc 2 của 9 = 3 (cm)
c)Xét 2 tam giác vuông BHD và tam giác CHE có:
HB = HC (cmt)
Góc B = góc C ( vì tam giác ABC cân tại A)
=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)
=> BD= CE (2 cạnh tương ứng)
Xét 2 tam giác ADI và tam giác AEI có:
góc A1 = góc A2 (cmt)
AI là cạnh chung
AD =AE ( vì AB = AC; BD = CE)
=> tam giác ADI = tam giác AEI (c-g-c)
=> góc I1 = góc I2 (2 góc tương ứng)
mà góc I1 + góc I2 = 180 độ
=> góc I1 = góc I2 = 180/ 2= 90 (độ)
=> AI vuông góc với DE
=> AH cũng vuông góc với DE
mặt khác: AH lại vuông góc với BC
=> DE // BC (đpcm)