giải chi tiết hộ nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc yOz=180-60=120 độ
góc zOm=góc yOm=120/2=60 độ
b: góc xOn=góc zOm=60 độ
=>góc xOn=góc xOy
=>Ox là phân giác của góc yOn
1: \(=\dfrac{1}{7}+\dfrac{3}{4}-\dfrac{8}{7}=\dfrac{3}{4}-1=-\dfrac{1}{4}\)
hình như tui vừa hỏi câu này xong nhưng người giải bài này hơi ẩu:)) hóng đáp án tui chép chung với kkk
Lời giải:
a.
Tại $x=5$ thì $B=\frac{5+3}{5-2}=\frac{8}{3}$
b.
\(A=\frac{x^2-x+1}{(x-2)(x+2)}+\frac{2(x+2)}{(x-2)(x+2)}-\frac{x-2}{(x-2)(x+2)}=\frac{x^2-x+1+2(x+2)-(x-2)}{(x-2)(x+2)}\)
\(=\frac{x^2+7}{(x-2)(x+2)}\)
c.
\(P=A:B(x+2)=\frac{x^2+7}{(x-2)(x+2)}:\frac{x+3}{x-2}.(x+2)=\frac{x^2+7}{x+3}\)
Áp dụng BĐT Cô-si:
$x^2+1\geq 2|x|\geq 2x$
$\Rightarrow x^2+7\geq 2x+6=2(x+3)$
$\Rightarrow P\geq \frac{2(x+3)}{x+3}=2$
Vậy $P_{\min}=2$. Giá trị này đạt tại $x^2=1\Leftrightarrow x=\pm 1$ (tm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}=\dfrac{2x-3y+z}{2\cdot9-3\cdot12+20}=\dfrac{6}{2}=3\)
Do đó: x=27; y=36; z=60
\(\dfrac{x}{3}\) = \(\dfrac{y}{4}\) ⇒ \(\dfrac{x}{3.3}\) = \(\dfrac{y}{3.4}\) = \(\dfrac{z}{5.4}\) = \(\dfrac{2x}{2.3.3}\) = \(\dfrac{3y}{3.3.4}\) = \(\dfrac{z}{5.4}\) ⇒ \(\dfrac{2x}{18}\) = \(\dfrac{3y}{36}\) = \(\dfrac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{18}\) = \(\dfrac{3y}{36}\) = \(\dfrac{z}{20}\) = \(\dfrac{2x-3y+z}{18-36+20}\) = \(\dfrac{6}{2}\) = 3
\(x=\) 3 : \(\dfrac{2}{18}\) = 27; y = 3 : \(\dfrac{3}{36}\) = 36; z = 3 x 20 = 60
Vậy ..