Tổng bình phương các nghiệm của phương trình : \(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x+63}=\frac{1}{5}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x^2+4x+3}=\frac{1}{\left(x+1\right)\left(x+3\right)}=\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}\right)\)
\(\frac{1}{x^2+8x+15}=\frac{1}{\left(x+3\right)\left(x+5\right)}=\frac{1}{2}\left(\frac{1}{x+3}-\frac{1}{x+5}\right)\)
...
Cộng theo vế các hạng tử sẽ bị triệt tiêu
\(\Leftrightarrow\frac{1}{x^2+16x+63}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+4x+3}=\frac{1}{5}\)
\(\Rightarrow\frac{1}{x^2+16x+63}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+4x+3}-\frac{1}{5}=0\)
\(\Leftrightarrow-\frac{x^2+10x-11}{5\left(x+1\right)\left(x+9\right)}=0\)
=>x2+10x-11=0
102-(-4(1.11))=144
\(\Rightarrow x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-10\pm\sqrt{144}}{2}\)
x1=[(-10)+12]:2=1
x2=[(-10)-12]:2=-11
tổng nghiệm của pt là 1+(-11)=-10
ĐK:\(x\ne-1;-3;-5;-7;-9\)
\(pt\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-...-\frac{1}{x+9}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)\(\Leftrightarrow\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)
\(\Leftrightarrow2\left(x+1\right)\left(x+9\right)=40\)\(\Leftrightarrow x^2+10x-11=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+11=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}\) (thoả)
Vậy....
xin lỗi nha, bài đó bằng có một cái 1/5 thôi, tại viết sai
ĐK : \(X\ne-1;-3;-7;-9\)
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x+63}=\frac{1}{5}\)
\(\frac{1}{\left(x+2\right)^2-1}+\frac{1}{\left(x+4\right)^2-1}+\frac{1}{\left(x+6\right)^2-1}+\frac{1}{\left(x-8\right)^2-1}=\frac{1}{5}\)
\(\frac{1}{\left(x+2-1\right)\left(x+2+1\right)}+\frac{1}{\left(x+4-1 \right)\left(x+4+1\right)}+\frac{1}{\left(x+6-1\right)\left(x+6+1\right)}+\frac{1}{\left(x+8-1\right)\left(x+8+1\right)}=\frac{1}{5}\)
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)
\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+....-\frac{1}{x+9}\right)=\frac{1}{5}\)
\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+9}\right)=\frac{1}{5}\)
\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{1}{5}:\frac{1}{2}=\frac{2}{5}\)
\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)
\(2\left(x+1\right)\left(x+9\right)=40\)
\(2x^2+20x+18=40\Leftrightarrow x^2+10x+9=20\)
\(\Leftrightarrow x^2+10x-11=0\Leftrightarrow x^2+10x-10-1=0\)
\(\Leftrightarrow\left(x^2-1\right)+\left(10x-10\right)=0\Leftrightarrow\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+11\right)=0\)
\(\orbr{\begin{cases}x-1=0\\x++11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}}\)( Thõa mãn )
Vậy ...............
1. Câu hỏi của Phạm Tiến Dũng new - Toán lớp 9 - Học toán với OnlineMath
1. Câu hỏi của Phạm Tiến Dũng new - Toán lớp 9 - Học toán với OnlineMath
2/ \(=\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)
\(=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)
\(=\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+9}=\frac{2}{5}\)
\(=\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)
\(=\frac{5\left(x+9\right)-5\left(x+1\right)}{5\left(x+1\right)\left(x+9\right)}=\frac{2\left(x+1\right)\left(x+9\right)}{5\left(x+1\right)\left(x+9\right)}\)
\(=>5\left(x+9\right)-5\left(x+1\right)=2\left(x+1\right)\left(x+9\right)\)
\(=5\left(x+9-x-1\right)-2\left(x+1\right)\left(x+9\right)=0\)
\(=5.8-2\left(x^2+10x+9\right)=0\)
\(=40-2x^2-20x-18=0\)
\(=-2x^2-20x-22=0\)
đến đây dùng máy tính giải hệ phương trình bậc 2 là xong
\(\frac{2}{x^2-4x+3}+\frac{2}{x^2-8x+15}+\frac{2}{x^2-12x+35}=-\frac{1}{2}\)(x khác 1;3;5;7)
<=>\(\frac{2}{x^2-3x-x+3}+\frac{2}{x^2-5x-3x+15}+\frac{2}{x^2-5x-7x+35}=-\frac{1}{2}\)
<=>\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{2}{\left(x-3\right)\left(x-5\right)}+\frac{2}{\left(x-5\right)\left(x-7\right)}=-\frac{1}{2}\)
<=>\(\frac{1}{x-3}-\frac{1}{x-1}+\frac{1}{x-5}-\frac{1}{x-3}+\frac{1}{x-7}-\frac{1}{x-5}=-\frac{1}{2}\)
<=>\(\frac{1}{x-7}-\frac{1}{x-1}=-\frac{1}{2}\)
<=>\(2x-2-2x+14=-x^2+8x-7\)
<=>\(x^2-8x+19=0\)
<=>(x-4)2+3=0(vô lí)
Vậy PT vô nghiệm
đk: ... \(\Rightarrow x\ne-1;-3;-5;-7\)
\(pt\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{2}{3}\)
\(\Leftrightarrow3\left(x+7-x-1\right)=2\left(x+1\right)\left(x+7\right)\)
\(\Leftrightarrow2x^2+16x+14=18\)
\(\Leftrightarrow2x^2+16x-4=0\)
\(\Delta'=64+8=72>0\)
phương trình có 2 nghiệm phân biệt:
\(x_{1,2}=\frac{-b'\pm\sqrt{\Delta}}{a}=\frac{-8\pm\sqrt{72}}{2}=-4\pm3\sqrt{2}\) (tm)
Vậy...
a) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=x+\frac{7}{12}\)
\(\frac{3.3\left(2x+1\right)}{12}-\frac{2\left(5x+3\right)}{12}+\frac{4\left(x+1\right)}{12}=\frac{12x+7}{12}\)
\(18x+9-10x-6+4x+4=12x+7\)
\(0x=0\) ( vô số nghiệm )
Vậy x \(\in\)R
b) ĐKXĐ : x \(\ne\)-1;-3;-5;-7
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)
\(\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}\right)=\frac{3}{16}\)
\(\frac{1}{x+1}-\frac{1}{x+7}=\frac{3}{8}\)
\(\left(x+1\right)\left(x+7\right)=16\)
Ta thấy x+1 và x+7 là 2 số cách nhau 6 đơn vị . Mà x + 1 < x + 7
\(\Rightarrow\)\(\hept{\begin{cases}x+1=2\\x+7=8\end{cases}\Rightarrow x=1}\)
hoặc \(\hept{\begin{cases}x+1=-2\\x+7=-8\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\x=-15\end{cases}}\)( loại )
Vậy x = 1
Mình không ghi lại đề:
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)
\(\frac{2}{\left(x+1\right)\left(x+3\right)}+...+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)
\(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+...+\frac{1}{x+7}-\frac{1}{x+9}=\frac{2}{5}\)
\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)
\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)
<=>40=2(x+1)(x+9)
<=>\(x^2+10x-11=0\)
<=>\(\left(x-1\right)\left(x+11\right)=0\)
<=>x=1 hoặc x=-11
Ta có:
\(1^2+\left(-11\right)^2=122\)
Ai thấy mình làm đúng thì tích nha.Ai tích mình mình tích lại
mk nghĩ là = 122 đó bn