Cho biểu thức
A=2010+2010^2+2010^3+...+2010^2010
CMR: A chia hết cho 2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2010^1+2010^2+2010^3+..........................................+2010^2010
vay suy ra co tat ca 2010 s hang vay ghep cap
A=2010(1+2010)+2010^3(1+2010)+..........................+2010^9(1+2010)
A=2010.2011+2010^3.2011+............................+2010^9.2011
A=2011(2010+........2010^9) chia het 2011
suy ra A chia het cho 2011
A=(1+2010)+2010 mũ 2+2010 mũ 3 +...+2010 mũ 6 + 2010 mũ 7
A=2011+2010 mũ 2(1+2010)+...+2010 mũ 6(1+2010)
A=2011+2010 mũ 2.2011+...2010 mũ 6.2011
A=2011(1+2010+...+2010 mũ 6)chia hết cho 2011
A=(2010+2010^2)+(2010^3+2010^4)+...+(2010^2009+2010^2010)
A=2010.(1+2010)+2010^3.(1+2010)+...+2010^2009.(1+2010)
A=2010.2011+2010^3.2011+...2010^2009.2011
A=2011.(2010+2010^3+...2010^2009)
Vì 2011chia hết cho 2011
nên2011.(2010+2010^3+...2010^2009)chia hết cho 2011
Hay Achia hết cho 2011.
TICK CHO MINH NHEN!
S=(2010+2010^2)+(2010^3+2010^4)+...+(20010^2009)+(2010^2010)
=2010(1+2010)+2010^3(1+2010)+...+2010^2009(1+2010)
=2010.2011+2010^3.2011+...+2010^2009.2011
=2011(2010+...+2010^2009) chia hết 2011
nha
M=1+2010+2010^2+2010^3+...+2010^7
Ta có: 2011=1+2010
Số số hạng của tổng M là: (7-0):1+1=8
Mà 8:2=4 nên ta có:
M=(1+2010)+(2010^2+2010^3)+(2010^4+2010^5)+(2010^6+2010^7)
M=2011+2010^2.(1+2010)+2010^4.(1+2010)+2010^6.(1+2010)
M=2011+2010^2.2011+2010^4.2011+2010^6.2011
M=2011.(1+2010^2+2010^4+2010^6)
Vì 2011 chia hết cho 2011 và 1+2010^2+2010^4+2010^6 là số nguyên
Vậy M chia hết cho 2011
Mọi người tk cho mình nha. Mình cảm ơn nhiều ^.<
=> 2010M=2010+2010^3+2010^4+...+2010^8
=> M=2010^8-1/2009
=> M chia hết 2011
A=2010+20102+20103+.....+20102010
A=2010(1+2010)+20103(1+2010)+........+20109(1+2010)
A=2010.2011+20103.2010+....+20109.2011
A=2011(2010+....+20109) chia hết cho 2011
=> A chia hết cho 2011(đpcm)
A = 2010 + 20102 + 20103 + ... + 20102010
A = 2010 . ( 1 + 2010 ) + 20103 . (1 + 2010 ) + ... + 20109 . ( 1 + 2010 )
A = 2010 . 2011 + 20103 . 2011 + ... + 20109 . 2011
A = 2011 . ( 2010 + 20103 + ... + 20109 )
Mà 2011 . ( 2010 + 20103 + ... + 20109 ) \(\in\)2011
=> A \(\in\)2011
๖²⁴ʱ𝒄𝒉𝒖́𝒄 𝒆𝒎 𝒉𝒐̣𝒄 𝒕𝒐̂́𝒕✟ᴾᴿᴼシ