Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=2010\left(1+2010\right)+2010^3\left(1+2010\right)+....+2010^{2009}\left(1+2010\right)\)
\(=2010.2011+...+2010^{2009}.2011\) chia hết cho 2011
=>đpcm
M= ( 1+20101)+(20102+20103)+(20104+20105)+(20106+20107)
M= 1.(2010+1) + 20122.(2010+1)+20104.(2010+1)+20106.(2010+1)
M= 2011.(1+20122+20104+20106)
Vậy M chia hết cho 2011
dễ ợt
s=2010(1+20100+2010^3(1+2010)+............+2010^2009(1+2010)
s=2010.2011+2010^3.2011+.........+2010^2009.2011
s=2011(2010+2010^3+.......+2010^2009) chia hết cho 2011
\(S=\left(2010+2010^2\right)+\left(2010^3+2010^4\right)+...+\left(2010^{2009}+2010^{2010}\right)\)
\(S=2010\left(2010+1\right)+2010^3\left(2010+1\right)+...+2010^{2009}\left(2010+1\right)\)
\(S=2011.\left(2010+2010^3+2010^5+...+2010^{2009}\right)\) chia hết cho 2011
M=(2010+2010^2)+(2010^3+2010^4)+(2010^5+2010^6)+2010^7+1
=2010x2011+2010^3x2011+2010^5x2011+2010^7+1
=2011x(2010+2010^3+2010^5)+2010^7+1
mà 2010^6 đồng dư với 1 (mod 2011) nen 2010^6 x 2010 dong du voi 2010(mod 2011)
nên 2010^6 x 2010 +1 đồng dư với 2011 (mod 2011) nên 2010^7 +1 chia hết cho 2011 vậy m chia hết cho 2011
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
A=2010^1+2010^2+2010^3+..........................................+2010^2010
vay suy ra co tat ca 2010 s hang vay ghep cap
A=2010(1+2010)+2010^3(1+2010)+..........................+2010^9(1+2010)
A=2010.2011+2010^3.2011+............................+2010^9.2011
A=2011(2010+........2010^9) chia het 2011
suy ra A chia het cho 2011