tìm số nhỏ nhất có 3 chữ số khi chia cho 2;3;4;5;6 đều hết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là a(Điều kiện: \(99< a< 1000;a\in N\))
Vì a chia 2 dư 1 nên a+1 chia hết cho 2
Vì a chia 3 dư 2 nên a+1 chia hết cho 3
Vì a chia 4 dư 3 nên a+1 chia hết cho 4
Do đó: \(a+1\in BC\left(2;3;4\right)\)
\(\Leftrightarrow a+1\in\left\{12;24;36;...;96;108;120;...\right\}\)
mà a+1 là số tự nhiên nhỏ nhất có 3 chữ số
nên a+1=108
hay a=107
Vậy: Số tự nhiên cần tìm là 107
Gọi số tự nhiên cần tìm là a(Điều kiện: 99<a<1000;a∈N99<a<1000;a∈N)
Vì a chia 2 dư 1 nên a+1 chia hết cho 2
Vì a chia 3 dư 2 nên a+1 chia hết cho 3
Vì a chia 4 dư 3 nên a+1 chia hết cho 4
Do đó: a+1∈BC(2;3;4)a+1∈BC(2;3;4)
⇔a+1∈{12;24;36;...;96;108;120;...}⇔a+1∈{12;24;36;...;96;108;120;...}
mà a+1 là số tự nhiên nhỏ nhất có 3 chữ số
nên a+1=108
hay a=107
Vậy: Số tự nhiên cần tìm là 107
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Gọi số đó là a=>a-1⋮2,3,4,5,6
=>a-1=(60,120,180,...960)
=>a=(61,121,181,...961)
Mà a là số nhỏ nhất có 3 chữ số =>a=121
Vì số đó chia 2; chia 3; chia 4; chia 5 dư 1 nên số đó bớt đi 1 thì chia hết cho cả 2; 3; 4; 5; 6
Số nhỏ nhất có 3 chữ số chia hết cho cả 2; 3; 4; 5; 6 là: 120
Số cần tìm là: 120 + 1 = 121
Đáp số 121
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Gọi n là số nhỏ nhất chia hết cho 2 ; 3 ; 4 ; 5 ; 6 => n là BCNN của ( 2 ; 3 ; 4 ; 5 ; 6 ) và n cóa 3 chữ số.
Ta có :
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 3 . 2.
BCNN ( 2; 3 ; 4 ; 5 ; 6 ) = 22 . 3 . 5 = 60
B ( 60 ) = BC ( 2 ; 3 ; 4 ; 5 ; 6 ) E { 0 ; 60 ; 120 ; 180 ; ... }
Vì n là 1 số nhỏ nhất chia hết cho 2 ; 3 ; 4 ; 5 ; 6 và n cóa 3 chữ số nên n = 120
Vậy số tự nhiên nhỏ nhất cóa 3 chữ số chia hết cho 2 ; 3 ; 4 ; 5 ; 6 là 120
so nho nhat chia het cho 2 ; 3; 4; 5;6
la so 9840
DS : 9840 chac 100% luon