Cho tam giác ABC,trên tia đối tia AB lấy điểm E,trên tia đối tia AC lấy điểm D.Các tia phân giác góc ACB và AED cắt nhau ở F.Chứng minh : Góc EFC=(ABD+ADE)/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của CF với BE là M, giao điểm của EF với CD là N.
Theo tính chất góc ngoài của tam giác, ta có:
BMF^=B^+C1^;BMF^=F^+E1^
suy ra B^+C1^=F^+E1^ (1)
Tương tự D^+E2^=F^+C2^ (2)
Mặt khác, theo giả thiết thì: C1^=C2^,E1^=E2^ (3)
Từ (1) (2) và (3) suy ra
2F^=B^+D^ nên F^=B^+D^2
hay CFE^=ABC^+ADE^2
Chúc em học tốt, thân!
Gọi giao điểm của CF với BE là M, giao điểm của EF với CD là N.
Theo tính chất góc ngoài của tam giác, ta có:
BMF^=B^+C1^;BMF^=F^+E1^
suy ra B^+C1^=F^+E1^ (1)
Tương tự D^+E2^=F^+C2^ (2)
Mặt khác, theo giả thiết thì: C1^=C2^,E1^=E2^ (3)
Từ (1) (2) và (3) suy ra
2F^=B^+D^ nên F^=B^+D^2
hay CFE^=ABC^+ADE^2
Xét tứ giác EDCB có
A là trung điểm của đường chéo DB
A là trung điểm của đường chéo EC
Do đó: EDCB là hình bình hành
Suy ra: ED//BC
hay \(\widehat{ADE}=\widehat{ABC};\widehat{AED}=\widehat{ACB}\)