mot so chia cho 3 du 1, chia cho 4 du 2,chia cho 5 du 3,chia cho 6 du 4 va chia het cho 11.Tìm số đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm stn nhỏ nhất sao cho số đó chia 3 du 1, chia 4 du 2 chia 5 du 3, chia 6 du 4 va chia het cho 11.
Gọi số phải tìm là a ( a nhỏ nhất , a \(\in N\))
TBR ta có : ( a - 1 ) \(⋮3\)
( a - 2 ) \(⋮4\)
( a - 3 ) \(⋮5\)
( a - 4 ) \(⋮6\)
a \(⋮11\)
* Xét : \(\hept{\begin{cases}\left(a-1\right)⋮3\\3⋮3\end{cases}}\Rightarrow\left(a+1-3\right)⋮3\Rightarrow\left(a+2\right)⋮3\)
* Xét : \(\hept{\begin{cases}\left(a-2\right)⋮4\\4⋮4\end{cases}}\Rightarrow\left(a+2-4\right)\Rightarrow\left(a+2\right)⋮4\)
* Xét : \(\hept{\begin{cases}\left(a-3\right)⋮5\\5⋮5\end{cases}}\Rightarrow\left(a+3-5\right)⋮5\Rightarrow\left(a+2\right)⋮5\)
* Xét \(\hept{\begin{cases}\left(a-4\right)⋮6\\6⋮6\end{cases}}\Rightarrow\left(a+4-6\right)⋮6\Rightarrow\left(a+2\right)⋮6\)
\(\Rightarrow\)\(a+2\in BC\left(3;4;5;6\right)\)
Có : 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2 . 3
\(\Rightarrow BCNN\left(3;4;5;6\right)=2^2.3.5=60\)
\(BC\left(3;4;5;6\right)=B\left(60\right)=\left\{0;60;120;180;240;...\right\}\)
\(\Rightarrow a+2\in\left\{0;60;120;180;240;...\right\}\)a là STN nên a + 2 > 0.
Ta có bảng sau :
a+2 | 60 | 120 | 180 | 240 | 300 | 360 | 420... |
a | 58 | 118 | 178 | 238 | 298 | 358 | 418.... |
\(a⋮11\) | / | / | / | / | / | / | \(⋮\) |
Vậy stn nhỏ nhất thỏa mãn đề là 418
a+2 chia hết cho 3,4,5,6 vậy a+2 là bội chung của 3,4,5,6
mà a chia hết cho 11 và nhỏ nhất nên a=428
Từ đề bài ta biết :
số cần tìm + 2 chia hết cho 3 ; 4 ; 5 ; 6 thương tăng thêm 1 đơn vị và chia 11 dư 2
=> số đó thuộc bội của 3 . 5 . 6 . 2 = 60
=> số đó có thể là { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; 540 ; 600 ; ...
Vì chia 11 dư 2 nên số cần tìm + 2 = 420
=> số cần tìm là 418
Gọi số cần tìm là a, ta có:
a : 3 dư 1 => a+2 chia hết cho 3
a : 4 dư 2 => a+2 chia hết cho 4
a : 5 dư 3 => a+2 chia hết cho 5
a: 6 dư 4 => a+2 chia hết cho 6
=> a+2 thuộc BC (3;4;5;6)
ta có: 3=3
4= 2^2
5=5
6=3*2
=> BCNN (3;4;5;6)= 60
=> a+2 thuộc B(60)
Mà a thuộc B(13)
=> a= 598
Gọi số cần tìm là a, ta thấy: (a+2) chia hết cho 3,4,5 và 6 và do a nhỏ nhất nên a thuộc BC(3,4,5,6)
Ta có: 3 = 3, 4 = 22, 5 = 5, 6 = 3.2
BCNN(3,4,5,6) = 3.22.5 = 60
BC(3,4,5,6) = B(60) = {0, 60,120,180,...}
--> a+2 = {0, 60, 120, 180,...}
--> a = {-2, 58, 118, 179, ..}
Ta thấy trong dãy có số 539 là số nhỏ nhất chia hết cho 11
Vậy số cần tìm là 539
a) gọi số tự nhiên đó là A
A+1 thì chia hết cho 3;4;5
suy ra A+1 là BC (3;4;5)
A + 1 thuộc tập hợp: 60;120;180;240;......
A thuộc tập hợp : 59 ; 119;179;239;.......
Bạn tự làm nốt nhé
Số đó là 418