Cho tam giác ABC. Trên tia đối tia AB lấy điểm e sao cho AB=AE. Trên tia đối tia AC lấy điểm D sao cho AC=AD.
a.) CM: BC=DE .
b.) CM: BC//DE.
Mình xin mọi người giúp mình ạ, mình cần gấp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C/m
a) Xét tam giác vuông ABC, ta có
BC2 = AB2 + AC2 (đl pytago)
=> BC2 = 32 + 42 =9+16 = 25
=> \(\hept{\begin{cases}BC^2=\sqrt{25}=5\\BC^2=-\sqrt{25}\left(l\right)\end{cases}}\)
b) Xét tam giác ABD, ta có : AD=AB=3cm(gt)
=> ABD là tam giác cân tại A
c) Xét tam giác vuông ABC và tam giác vuông ADE
AD=AB (gt)
AE=AC (gt)
=> 2 tam giác vuông ABC = tam giác vuông ADE ( 2cgv)
=> DE=BC ( 2 cạnh tương ứng )
a,keo dai BC sao cho BC=CE
tam giác AbC=tam giác DEC
=>Be//ED va BE=CD
tam giac EBD=tam giac EDB[tu cm]
EBD=BDE
=>BC // ED
1,3: Xet ΔADE và ΔACB có
AD/AC=AE/AC
góc DAE=góc CAB
=>ΔADE đồng dạng vói ΔACB
=>góc ADE=góc ACB
=>DE//BC
2: DE/CB=AD/AC=3/10
Vì tam giác vuông ABC tại điểm A:
Áp dụng định địa lý py-ta-go ta có:
BC^2= AB^2 + AC^2
BC^2 = 3^2 + 4^2
BC^2 = 9+ 16
BC^2 = 25
BC^2 = 5 ( cm )
b) Vì AD = Ab
=> Tam giác ABC cân tại A
c) Xét tam giác AED và tam giác ACB có:
AD = AB ( gt)
A1 = A2 ( 2 góc đối đỉnh )
AE - AC ( gt)
=> Tam giác AED = ACD ( C.g.c )
=> DE + BC ( 2 Cạnh Tương ứng )
a,vì tam giác ABC vuông tại A nên theo định lí Pytago ta có:
AB2+AC2=BC2
\(\Rightarrow\)32+42=BC2
\(\Rightarrow\)25=BC2
\(\Rightarrow\)BC=5 (cm)
a: Xét tứ giác BDEC có
A là trung điểm của BE
A là trung điểm của CD
Do đó: BDEC là hình bình hành
Suy ra: BC=DE