K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

Ta có hình vẽ sau:

A B C E D M N 1 2

a) Xét ΔABC và ΔADE có:

AB = AD (gt)

\(\widehat{A_1}\) = \(\widehat{A_2}\) ( 2 góc đối đỉnh)

AC = AE (gt)

\(\Rightarrow\) ΔABC = ΔADE (c-g-c)

\(\Rightarrow\) \(\widehat{ADE}\) = \(\widehat{ABC}\) (2 góc tương ứng)

Mà hai góc này lại ở vị tí so le trong nên:

\(\Rightarrow\) BC // DE (đpcm)

b) Vì BC // DE (ý a) \(\Rightarrow\) \(\widehat{MEA}\) = \(\widehat{NCA}\) (cặp góc so le trong)

Xét ΔMAE và ΔNAC có:

\(\widehat{MEA}\) = \(\widehat{NCA}\) ( cm trên)

AE = AC (gt)

\(\widehat{MAE}\) = \(\widehat{NAC}\) ( 2 góc đối đỉnh)

\(\Rightarrow\) ΔMAE = ΔNAC (g-c-g)

\(\Rightarrow\) AM = AN ( 2 cạnh tương ứng) (đpcm)

18 tháng 11 2016

Ta có hình vẽ:

A B C N M D E

a) Xét Δ DAE và Δ BAC có:

AD = AB (gt)

DAE = BAC (đối đỉnh)

AE = AC (gt)

Do đó, Δ DAE = Δ BAC (c.g.c)

=> DEA = BCA (2 góc tương ứng)

Mà DEA và BCA là 2 góc so le trong nên DE // BC (đpcm)

b) Vì DE // BC nên MDA = ABN (so le trong)

Xét Δ DAM và Δ BAN có:

MDA = ABN (cmt)

AD = AB (gt)

DAM = BAN (đối đỉnh)

Do đó, Δ DAM = Δ BAN (g.c.g)

=> AM = AN (2 cạnh tương ứng) (đpcm)

 

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ABD}=\widehat{ADB}=45^0\)

Xét ΔAEC vuông tại A có AE=AC

nên ΔAEC vuông cân tại A

=>\(\widehat{AEC}=\widehat{ACE}=45^0\)

Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//CE
 

2 tháng 5 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

ΔABC và ΔADE có:

AB = AD (gt)

AC = AE (gt)

∠BAC = ∠DAE (hai góc đối đỉnh)

⇒ ΔABC = ΔADE (c.g.c)

⇒ ∠C = ∠E ⇒ DE // BC.

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

Suy ra: BC=DE

1 tháng 10 2021

Bài 5: Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Chứng minh rằng: a) DE = BC b) DE vuông góc với BC

 

18 tháng 12 2020

a)

Sửa đề: ΔABM=ΔADN

Xét ΔAED và ΔACB có 

AE=AC(gt)

\(\widehat{EAD}=\widehat{CAB}\)(hai góc đối đỉnh)

AD=AB(gt)

Do đó: ΔAED=ΔACB(c-g-c)

\(\widehat{ADE}=\widehat{ABC}\)(hai góc tương ứng)

hay \(\widehat{ADN}=\widehat{ABM}\)

Xét ΔADN và ΔABM có

DN=BM(gt)

\(\widehat{ADN}=\widehat{ABM}\)(cmt)

AD=AB(gt)

Do đó: ΔADN=ΔABM(c-g-c)

b) Ta có: ΔADN=ΔABM(cmt)

nên \(\widehat{DAN}=\widehat{BAM}\)(hai góc tương ứng)

mà \(\widehat{BAM}+\widehat{DAM}=180^0\)(hai góc kề bù)

nên \(\widehat{DAN}+\widehat{DAM}=180^0\)

\(\Leftrightarrow\widehat{NAM}=180^0\)

hay M,A,N thẳng hàng(đpcm)

b,Gọi I là giao điểm của BC và ED

Xét ∆AED và ∆ABC có:

+AB=AD(gt)

+\(\widehat{BAC}=\widehat{DAB}\left(=90^o\right)\)

+AC=AE(gt)

\(\Rightarrow\)∆AED=∆ABC(ch-cgv)

\(\Rightarrow\widehat{EDA}=\widehat{ABC}\) (2 góc tương ứng)

Mà \(\widehat{DEA}+\widehat{EDA}=90^o\)( do ∆ADE vuông tại A)

\(\Rightarrow\widehat{CBA}+\widehat{DEA}=90^o\)

\(\Rightarrow\)∆BIE vuông tại I

\(\Rightarrow DE\perp BC\)

1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có 

AB=AD(gt)

AC=AE(gt)

Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)

Suy ra: BC=DE(hai cạnh tương ứng)

2) Xét ΔABD có AB=AD(gt)

nên ΔABD cân tại A(Định nghĩa tam giác cân)

Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)

nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)