(3x3-10x2+13x-10) :(x-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3x^3+10x^2-5+n⋮3x+1\)
\(\Leftrightarrow3x^3+x^2+9x^2+3x-3x-1-4+n⋮3x+1\)
\(\Leftrightarrow x^2\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-\left(4-n\right)⋮3x+1\)
\(\Leftrightarrow\left(3x+1\right)\left(x^2+3x-1\right)-\left(4-n\right)⋮3x+1\)
mà \(\left(3x+1\right)\left(x^2+3x-1\right)⋮3x+1\)
nên \(-\left(4-n\right)⋮3x+1\)
\(\Leftrightarrow-\left(4-n\right)=0\)
\(\Leftrightarrow4-n=0\)
\(\Leftrightarrow n=4\)
Vậy: Để đa thức \(3x^3+10x^2-5+n\) chia hết cho đa thức 3x+1 thì n=4
a) Đa thức thương x 2 + 3x – 1 và đa rhức dư -4.
Kiểm tra bằng cách thực hiện (3x + 1)( x 2 + 3x – 1) + (-4),
b) Đa thức thương x + 2 và đa thức dư –x + 5.
a)=1x2x3x4x5/2x3x4x5x6 =1/6
b)=1x2x3x4x5x6x7x8x9/10x9x8x7x6x5x4x3 x2=1/10
Ta có: \(x-y=13\)
\(\Rightarrow\left(x-y\right)^2=169\)
\(\Rightarrow x^2-2xy+y^2=169\)
\(\Rightarrow x^2+y^2=169+2xy=169+2.17=203\)
\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=13\left(203+17\right)=13.220=2860\)
\(a,A=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ A=\left(x-2y\right)^2+10\left(x-2y\right)+5+\left(y-1\right)^2+2\\ A=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
\(b,\Leftrightarrow3x^3+10x^2-5+n=\left(3x+1\right)\cdot a\left(x\right)\)
Thay \(x=-\dfrac{1}{3}\Leftrightarrow3\left(-\dfrac{1}{27}\right)+10\cdot\dfrac{1}{9}-5+n=0\)
\(\Leftrightarrow-\dfrac{1}{9}+\dfrac{10}{9}-5+n=0\\ \Leftrightarrow-4+n=0\Leftrightarrow n=4\)
\(c,\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\\ \Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\\ \Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow n\in\left\{-1;1;3;5\right\}\)
x10 - 13x9 + 13x8 - ... - 13x + 13
= (x10 - 12x9) + (- x9 + 12x8) + ... + (- x + 12) + 1
= x9(x - 12) + x8(- x + 12) +...+ (- x + 12) + 1 = 1
Câu 7. Sắp xếp các hạng tử của đa thức
giảm dần của biến.
P(x) = 10 - 4x4 + 3x3 - 2x2 + x
theo lũy thừa giảm
A. P(x) = 10 + x - 2x2 + 3x3 - 4x4 . B.
C. P(x) = -4x4 - 2x2 + 3x3 + x +10 . D.
P(x) = -4x4 + 3x3 - 2x2 + x +10 .
P(x) = 3x3 + x +10 - 2x2 - 4x4 .
Câu 8. Sắp xếp các hạng tử của đa thức
tăng dần của biến.
P(x) = 3x2 -10 + 2x3 + 4x + x4
theo lũy thừa
A. P(x) = -10 + x4 + 2x3 + 3x2 . B.
C. P(x) = -10 + 4x + 3x2 + 2x3 + x4 . D.
P(x) = x4 + 2x3 + 3x2 + 4x -10 .
P(x) = x4 + 3x2 + 2x3 + 4x -10 .
Câu 9. Bậc của đơn thức 3y2 (2y2 )3 y là
A. 6 . B. 7 . C. 8 . D. 9 .
\(=\dfrac{3x^3-6x^2-4x^2+8x+5x-10}{x-2}=3x^2-4x+5\)