cho phương trình x2 - 2mx+m-2=0 (1) (x là ẩn , m là tham số )
a, giải phương trình (1) khi m=1
b, Chứng minh phương trình (1) có nghiệm với mọi m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(m=2\) vào phương trình, ta được:
\(x^2-4x+1=0\) \(\Leftrightarrow x=2\pm\sqrt{3}\)
Vậy ...
b) Ta có: \(\Delta'=m^2-m+1=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
b) Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(m-1\right)=4m^2-4m+4=\left(2m-1\right)^2\ge0\forall m\)
nên phương trình luôn có nghiệm với mọi m
1) Với m= 2 PT trở thành x 2 − 4 x + 3 = 0
Giải phương trình tìm được các nghiệm x = 1 ; x = 3.
2) Ta có Δ ' = m 2 − m 2 + 1 = 1 > 0 , ∀ m .
Do đó, phương trình (1) luôn có hai nghiệm phân biệt.
Từ giả thiết ta có x i 2 − 2 m x i + m 2 − 1 = 0 , i = 1 ; 2. x i 3 − 2 m x i 2 + m 2 x i − 2 = x i x i 2 − 2 m x i + m 2 − 1 + x i − 2 = x i − 2 , i = 1 ; 2.
Áp dụng định lí Viét cho phương trình (1) ta có x 1 + x 2 = 2 m ; x 1 . x 2 = m 2 − 1
Ta có
x 1 − 2 + x 2 − 2 = 2 m − 4 ; x 1 − 2 x 2 − 2 = x 1 x 2 − 2 x 1 + x 2 + 4 = m 2 − 1 − 4 m + 4 = m 2 − 4 m + 3
Vậy phương trình bậc hai nhận x 1 3 − 2 m x 1 2 + m 2 x 1 − 2 , x 2 3 − 2 m x 2 2 + m 2 x 2 − 2 là nghiệm là x 2 − 2 m − 4 x + m 2 − 4 m + 3 = 0.
a)thay m=1 vào pt ta có
\(x^2+4x=0\)
<=> \(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b) thay x=2 vào pt ta có: 13+m=0
<=>m=-13
thay m=-13 vào pt ta có
\(x^2+4x-12=0\)
<=>(x-2)(x+6)=0
<=>\(\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)\(\)
vậy với m=-13 thì nghiệm còn lại là x=-6
c) để pt có 2 nghiệm pb thì \(\Delta>0\)
<=>16-4m-4>0
<=>3-m>0
<=>m<3
áp dụng định lí Vi-ét ta có\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m+1\end{matrix}\right.\)
theo đề bài ta có \(x_1^2+x_2^2=10\)
<=>\(\left(x_1+x_2\right)^2-2x_1x_2=10\)
<=>16-2m-2=10
<=>2-m=0
<=>m=2(nhận)
vậy với m=2 thì pt có 2 nghiệm pb thỏa yêu cầu đề bài.
Δ=(-2m)^2-4(m-1)
=4m^2-4m+4
=4m^2-4m+1+3
=(2m-1)^2+3>=3>0
=>Phương trình luôn có hai nghiệm phân biệt
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
`@` Thay `m=3` vào ptr có: `x^2-3x+3-1=0<=>x^2-3x+2=0`
Ptr có: `a+b+c=1-3+2=0=>x_1 =1;x_2=-2`
`@` Ptr có: `\Delta=(-m)^2-4m+4=m^2-4m+4=(m-2)^2 >= 0` (Luôn đúng `AA m`)
`=> AA m` ptr luôn có nghiệm.
______________________________
`x^2-2mx+m=7<=>x^2-2mx+m-7=0`
Ptr có: `\Delta'=(-m)^2-m+7=m^2-m+7=(m-1/2)^2+27/4 > 0 AA m`
`=>` Ptr có `2` nghiệm pb `AA m`
a: a=1; b=2m; c=-1
Vì a*c<0 nên (2) luôn có hai nghiệm phân biệt
b: \(x_1^2+x_2^2-x_1x_2=7\)
=>\(\left(x_1+x_2\right)^2-3x_1x_2=7\)
=>\(\left(-2m\right)^2-3\cdot\left(-1\right)=7\)
=>4m^2=7-3=4
=>m^2=1
=>m=1 hoặc m=-1
Ta có: \(\Delta'=2m^2+4>0\forall m\)
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-4\end{matrix}\right.\)
Mặt khác: \(x_1^2+x_2^2=20\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)
\(\Rightarrow4m^2+2m^2-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy ...
khi m=1 ta có phương trình khi đó là :
\(x^2-2x-1=0\Leftrightarrow\left(x-1\right)^2=2\Leftrightarrow x=1\pm\sqrt{2}\)
với mọi m , ta có \(\Delta'=m^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\forall m\)
vaajy phương trình có nghiệm với mọi m