Tìm chữ số tận cùng của tổng S = 21 + 35 + 49 + … + 20048009.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhận thấy một số có tận cùng là \(x\) thì khi lũy thừa lên mũ \(4k+1\left(k\inℕ\right)\) thì số nhận được cũng sẽ có tận cùng là \(x\). (*)
Thật vậy, giả sử \(N=\overline{a_0a_1a_2...a_n}\). Khi đó \(N^{4k+1}=\left(\overline{a_0a_1a_2...a_n}\right)^{4k+1}\) \(=\left(\overline{a_0a_1a_2...a_{n-1}0}+a_n\right)^{4k+1}\) \(=a_n^{4k+1}\) nên ta chỉ cần xét số dư của các số từ 0 đến 9 lũy thừa với số mũ \(4k+1\).
Dễ nhận thấy nếu \(a_n\in\left\{0,1,5,6\right\}\) thì \(a_n^{4k+1}\) sẽ có chữ số tận cùng là \(a_n\).
Nếu \(a_n\in\left\{3,7,9\right\}\) thì để ý rằng \(3^4=9^2=81;7^4=2401\) đều có tận cùng là 1 nên hiển nhiên \(a_n^{4k}=\left(a_n^4\right)^k\) có tận cùng là 1. Do đó nếu nhân thêm \(a_n\) thì \(a_n^{4k+1}\) có chữ số tận cùng là \(a_n\).
Nếu \(a_n\in\left\{2,4,8\right\}\) thì do \(2^4=16;4^4=256;8^4=4096\) đều có chữ số tận cùng là 6 \(\Rightarrow a_n^{4k}\) có chữ số tận cùng là 6. Khi nhân thêm \(a_n\) vào thì bộ \(\left(a_n;a_n^{4k+1}\right)\) sẽ là \(\left(2;2\right);\left(4;4\right);\left(8;8\right)\).
Vậy (*) đã được chứng minh.
\(\Rightarrow\) S có chữ số tận cùng là \(2+3+4+...+4\) (tới đây bạn chỉ cần đếm xem có bao nhiêu trong mỗi chữ số từ 0 đến 9 xuất hiện trong tổng trên là xong nhé)
\(a_n^{4k}\)
Bài 2 :
a) \(2^a+154=5^b\left(a;b\inℕ\right)\)
-Ta thấy,chữ số tận cùng của \(5^b\) luôn luôn là chữ số \(5\)
\(\Rightarrow2^a+154\) có chữ số tận cùng là \(5\)
\(\Rightarrow2^a\) có chữ số tận cùng là \(1\) (Vô lý, vì lũy thừa của 2 là số chẵn)
\(\Rightarrow\left(a;b\right)\in\varnothing\)
b) \(10^a+168=b^2\left(a;b\inℕ\right)\)
Ta thấy \(10^a\) có chữ số tận cùng là số \(0\)
\(\Rightarrow10^a+168\) có chữ số tận cùng là số \(8\)
mà \(b^2\) là số chính phương (không có chữ số tận cùng là \(8\))
\(\Rightarrow\left(a;b\right)\in\varnothing\)
Bài 3 :
a) \(M=19^k+5^k+1995^k+1996^k\left(với.k.chẵn\right)\)
Ta thấy :
\(5^k;1995^k\) có chữ số tận cùng là \(5\) (vì 2 số này có tận cùng là \(5\))
\(\Rightarrow5^k+1995^k\) có chữ số tận cùng là \(0\)
mà \(1996^k\) có chữ số tận cùng là \(6\) (ví số này có tận cùng là số \(6\))
\(\Rightarrow5^k+1995^k+1996^k\) có chữ số tận cùng là chữ số \(6\)
mà \(19^k\left(k.chẵn\right)\) có chữ số tận cùng là số \(1\)
\(\Rightarrow M=19^k+5^k+1995^k+1996^k\) có chữ số tận cùng là số \(7\)
\(\Rightarrow M\) không thể là số chính phương.
b) \(N=2004^{2004k}+2003\)
Ta thấy :
\(2004k=4.501k⋮4\)
mà \(2004\) có chữ số tận cùng là \(4\)
\(\Rightarrow2004^{2004k}\) có chữ số tận cùng là \(6\)
\(\Rightarrow N=2004^{2004k}+2003\) có chữ số tận cùng là \(9\)
\(\Rightarrow N\) có thể là số chính phương (nên câu này bạn xem lại đề bài)
số tận cùng của 74^30 là (6)
số tận cùng của 49^31 là (9)
số tận cùng của 87^32 là (1);
số tận cùng của. 58^33 là (8);
số tận cùng của 23^35 là (7).
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
\(S=1+3^2+3^3+3^4+...+3^{48}+3^{49}\)
\(=1+\left(3^2+3^3+3^4+3^5\right)+...+\left(3^{46}+3^{47}+3^{48}+3^{49}\right)\)
\(=1+3^2\left(1+3+9+27\right)+...+3^{46}\left(1+3+9+27\right)\)
\(=1+3^2.30+...+3^{46}.30\)
\(=1+30.\left(3^2+3^6+...+3^{42}+3^{46}\right)\)
Do \(30.\left(3^2+3^6+...+3^{42}+3^{46}\right)\)có chữ số tận cùng là 0
Nên \(S=1+30.\left(3^2+3^6+...+3^{42}+3^{46}\right)\)có tận cùng là 1
Ta có: 7430= 74.74.74.74.74.......74= TC6.TC6.TC6......TC6= TC6
TC là tận cùng nha bạn
bạn cứ lần lượt phân tích mấy các khác ra thế nhưng nhớ phân tích ra tận cùng =1;5;6 nha bạn
Có chỗ nào không hiểu hỏi mình
lik e nha bạn
7430 = 7428 . 742 = ( 744 )7 . .....6 = .....6 7 . ....6 = .....6 . ....6 = ....6
4931 = 4930 . 49 = (492 )15 . 49 = ....1 15 . 49 = .....1 . ...9 = ...9
97 32 = ( 97 4) 8 = .....1 8 = ....1
5833 = 58 32 . 58 = (584 ) 8 . 58 = ......6 8 . ....8 = ....6 . ....8 = ....8
23 35 = 2332 . 23 3 = (234)8 . .....3 3 = ....1 8 . ...7 = ....1 . ....7 = ...7
Xét số bị trừ: 32 x 44 x 75 x 69
Ta có: 32 . 75 có tận cùng là 0.
=> 32 x 44 x 75 x 69 có tận cùng là chữ số 0. (1)
Ta có : 21 x 49 x 65 x 55 có thừa số 55 và trong đó toàn các thừa số lẻ nên
21 x 49 x 65 x 55 tận cùng là 5. (2)
Từ (1) và (2) => 32 x 44 x 75 x 69 - 21 x 49 x 65 x 55 = (...0) - (...5) = (...5)
Vậy chữ số tận cùng của 32 x 44 x 75 x 69 - 21 x 49 x 65 x 55 là 5
4931 = 4930+1= 4930 . 49 = (492)15 . (....9) = (...1)15.(...9) = (...1).(...9) = (...9)
Vậy 4931 có tận cùng là 9
8732 = (874)8 = (...1)8 = (...1)
Vậy 8732 có tận cùng là 1
5833 = 5832+1 = 5832.58 = (584)8.(...8) = (...6)8.(...8) = (...6).(..8) = (...8)
Vậy 5833 có tận cùng là 8
2335 = 2332+3 = 2332 . 232 = (234)8 .(...9) = (...1)8.(...9) = (...1).(...9) = (....9)
Vậy 2335 có tận cùng là 9
tinbhs chất để áp dụng vào bài toán:
Tính chất 2 : Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi.
Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng.
Tính chất 2 : Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi.
Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng.
(tính chất để áp dụng vào bài toán)