Cho tam giác ABD cân tại A , Lấy 2 điểm D,E lần lượt trên cạnh AB,AC .Chứng minh
a) Nếu AD=AE thì DE //BC
b)Nếu DE // BC thì AD=AE
giúp mik mik đang cần gấp
MIK sẽ tik 3 tik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ABE và tam giác ADE có : AE chung
AB = AD (Gt)
^DAE = ^BAE do AE là pg của ^BAC (gt)
=> tam giác ABE = tam giác ADE (c-g-c)
b, AB = AD (gt)
=> tam giác ABD cân tại A (đn)
c, đề sai
Xét ΔADB và ΔAEC có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE và góc BAD=góc CAE
góc AEB>góc C
=>góc AEB>góc ABE
=>AB>AE
Lấy M sao cho D là trung điểm của AM
Xét tứ giác ABME có
D là trung điểm chung của AM và BE
=>ABME là hbh
=>AB=ME>AE và góc BAD=góc AME
=>góc DAE>góc DME
=>góc DAE>góc BAD
a) Ta có: ˆABD+ˆABC=1800ABD^+ABC^=1800ˆABD+ˆABC=1800(hai góc kề bù)
ˆACE+ˆACB=1800ACE^+ACB^=1800ˆACE+ˆACB=1800(hai góc kề bù)
mà ˆABC=ˆACBABC^=ACB^ˆABC=ˆACB(hai góc ở đáy của ΔABC cân tại A)
nên ˆABD=ˆACEABD^=ACE^ˆABD=ˆACE
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
ˆABD=ˆACEABD^=ACE^ˆABD=ˆACE(cmt)
xét tam giác ADE có góc ADE=(180 độ-góc A)/2
tương tự góc B=(180 độ-góc A)/2
=>góc B=góc ADE
mà chúng ở vị trí đồng vị nên DE//BC
Đây nữa
- Xét tam giác ADE và ABC có :
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
\(\Rightarrow DE//BC\)
Vậy ...
Xét tam giác ABC và tam giác ADE ta có:
`(AB)/(AC)=(AD)/(AE)=1`
`hatA` chung
`=>Delta ABC~DeltaADE(cgc)`
`=>hat{ADE}=hat{ABC}`
Mà 2 góc này ở VT đv
`=>DE////BC`
a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)
Do đó \(AD=BC\)
b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)
Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC
c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC
Mà AE//BC nên A,D,E thẳng hàng
Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)
Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)
Vậy A là trung điểm DE
a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)
Do đó \(AD=BC\)
b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)
Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC
c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC
Mà AE//BC nên A,D,E thẳng hàng
Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)
Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)
Vậy A là trung điểm DE