K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

ĐKXĐ: ...

\(\sqrt{x^2-x-30}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)

\(\Leftrightarrow\sqrt{\left(x+5\right)\left(x-6\right)}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)(*)

đặt \(\sqrt{x+5}=a\ge0;\sqrt{x-6}=b\ge0\)

\(\text{pt(*)}\Leftrightarrow ab-3a-2b=-6\\ \Leftrightarrow\Leftrightarrow ab-3a-2b+6=0\\ \Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\\ \Leftrightarrow\left(a-2\right)\left(b-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=2\\\sqrt{x-6}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+5=4\\x-6=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=15\left(tm\right)\end{matrix}\right.\)

9 tháng 7 2017

Đk: tự xác định

\(pt\Leftrightarrow\sqrt{x+3}-\left(\frac{1}{3}x+1\right)+\sqrt{6-x}-\left(-\frac{1}{3}x+2\right)-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)

\(\Leftrightarrow\frac{x+3-\left(\frac{1}{3}x+1\right)^2}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{6-x-\left(-\frac{1}{3}x+2\right)^2}{\sqrt{6-x}-\frac{1}{3}x+2}-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)

\(\Leftrightarrow\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{\left(x+3\right)\left(x-6\right)}{\sqrt{-\left(x+3\right)\left(x-6\right)}}=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-6\right)\left(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}\right)=0\)

Dễ thấy:\(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}< 0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=6\end{cases}}\)

NV
27 tháng 12 2020

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-1}+\sqrt{x+3}-\sqrt{\left(x-2\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-1\right)-\sqrt{x+3}\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{x+3}\right)\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{x+3}\\\sqrt{x-2}=1\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

2 tháng 7 2016

e mới lên lớp 9 thôi nên tin thì anh tin còn ko thì thôi nha

\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)

\(\Leftrightarrow x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\)\(\Leftrightarrow x-2-2.1.\sqrt{x-2}+1+5+y+z-4\sqrt{y-3}-6\sqrt{z-5}=0\)(-2+1+5 sẽ =4 nha làm vậy cho xuất hiện hằng đẳng thức (x+y)^2 nha anh)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+5+y+z-4\sqrt{y-3}-6\sqrt{z-5}=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+y-3-2.2\sqrt{y-3}+4+4+z-6\sqrt{z-5}=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+4+z-6\sqrt{z-5}=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+z-5-2.3\sqrt{z-5}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)\(\Rightarrow\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Rightarrow}\hept{\begin{cases}\left(\sqrt{x-2}\right)^2=1^2\\\left(\sqrt{y-3}\right)^2=2^2\\\left(\sqrt{z-5}\right)^2=3^2\end{cases}}}\Rightarrow\hept{\begin{cases}x-2=1\Rightarrow x=3\\y-3=4\Rightarrow x=7\\z-5=9\Rightarrow x=14\end{cases}}\)

Bài làm hơi dài do cái phần tách nó dài quá sợ ghi 1 dòng ko đù nên e tách thành 3 lần tách nên nó dài anh ghi vào vỡ có thể rút lại nha. Nếu thấy đúng . Nhớ Chọn Đúng nha anh cảm ơn

2 tháng 7 2016

để em ghi lại mai em hỏi thầy nha

11 tháng 1 2022
Not biếtmdnhdhd
11 tháng 1 2022

Hummmm

7 tháng 10 2015

bình phương 2 vế lên là ra p :>

 

29 tháng 9 2017

Đặt \(\sqrt{x+5}=a\text{≥}0\)

Ta có hệ phương trình \(\hept{\begin{cases}x^2+a=5\\x+5=a^2\end{cases}}\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\Leftrightarrow\left(x+\sqrt{x+5}\right)\left(x-\sqrt{x+5}+1\right)\)=0

29 tháng 9 2017

Đưa về dạng phương trình bậc nhất có căn thức. Ta có dạng sau:

\(\left(x.x\right)-\sqrt{x-5}=5\)

Gọi \(\sqrt{x-5}\Leftrightarrow a^2\) (a bình phương)

\(\left(x.x\right)-a^2=5\Leftrightarrow x^2-a^2=5\)

Vì \(x^{2+2}=x^4\Rightarrow\) Phương trình vô nghiệm