Giúp tớ vs tớ cảm ơn trước nhoá hihihi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18. iron-doing
19. wakes
còn lời giải chi tiết thì... mk ko biết .-.
\(A=\dfrac{2}{1x3}+\dfrac{2}{3x5}+\dfrac{2}{5x7}+...+\dfrac{2}{21x23}\)
\(A=2x\left(\dfrac{1}{1x3}+\dfrac{1}{3x5}+\dfrac{1}{5x7}+...+\dfrac{1}{21x23}\right)\)
\(A=2x\dfrac{1}{2}x\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{21}-\dfrac{1}{23}\right)\)
\(A=1-\dfrac{1}{23}\)
\(A=\dfrac{22}{23}\)
\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(B=\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+\dfrac{1}{5x6}+\dfrac{1}{6x7}+\dfrac{1}{7x8}+\dfrac{1}{8x9}+\dfrac{1}{9x10}\)
\(B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(B=\dfrac{1}{2}-\dfrac{1}{10}\)
\(B=\dfrac{5}{10}-\dfrac{1}{10}\)
\(B=\dfrac{4}{10}\)
\(B=\dfrac{2}{5}\)
c) Ta có: \(P=2x+\dfrac{1}{x+1}\)
\(\Leftrightarrow\dfrac{-x}{x+1}=2x+\dfrac{1}{x+1}\)
\(\Leftrightarrow\dfrac{-x}{x+1}=\dfrac{2x\left(x+1\right)+1}{x+1}\)
Suy ra: \(2x^2+2x+1=-x\)
\(\Leftrightarrow2x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=-\dfrac{1}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: Để \(P=2x+\dfrac{1}{x+1}\) thì \(x=-\dfrac{1}{2}\)
`a)F=((x+1)/(1-x)-(1-x)/(x+1)-(4x^2)/(x^2-1)):(4x^2-4)/(x^2-2x+1)`
`đk:x ne +-1`
`F=((-(x+1)^2+(x-1)^2-4x^2)/(x^2-1)):(4(x-1)(x+1))/(x-1)^2`
`=(-x^2-2x-1+x^2-2x+1-4x^2)/(x^2-1):(4(x+1))/(x-1)`
`=(-4x^2-4x)/((x-1)(x+1)).(x-1)/(4(x+1))`
`=(-4(x-1))/((x-1)(x+1)).(x-1)/(4(x+1))`
`=-4/(x+1).(x-1)/(4(x+1)`
`=(1-x)/(x+1)^2`
`F<-1`
`<=>(1-x-(x+1)^2)/(x+1)^2<0`
Vì `(x+1)^2>0`
`=>1-x-(x+1)^2<0`
`<=>(x+1)^2+x-1>0`
`<=>x^2+2x+1+x-1>0`
`<=>x^2+3x>0`
`<=>x(x+3)>0`
`<=>` $\left[ \begin{array}{l}x>0\\x<-3\end{array} \right.$
a: \(A=1+3+3^2+...+3^{11}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{10}\left(1+3\right)\)
\(=4\left(1+3^2+...+3^{10}\right)⋮4\)
b: \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(C=5+5^2+5^3+...+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)
\(=30+5^2\left(5+5^2\right)+...+5^6\left(5+5^2\right)\)
\(=30\left(1+5^2+...+5^6\right)⋮30\)
d: \(45⋮9;99⋮9;180⋮9\)
=>\(45+99+180⋮9\)
=>D chia hết cho 9
Bài 1:
câu a: 4\(\dfrac{4}{9}\) : 2\(\dfrac{2}{3}\) + 3\(\dfrac{1}{6}\)
= \(\dfrac{40}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{5}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{10}{6}\) + \(\dfrac{19}{6}\)
= \(\dfrac{29}{6}\)
b, (15,25 + 3,75) \(\times\) 4 + ( 20,71 + 5,29)\(\times\) 5
= 19 \(\times\) 4 + 26 \(\times\) 5
= 76 + 130
= 206
c, \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{3}\) - \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{4}\)
= \(\dfrac{2}{5}\) + \(\dfrac{4}{15}\) - \(\dfrac{1}{5}\)
= \(\dfrac{6}{15}\) + \(\dfrac{4}{15}\) - \(\dfrac{3}{15}\)
= \(\dfrac{7}{15}\)
d, 1\(\dfrac{5}{7}\) + 7\(\dfrac{3}{6}\) + 2\(\dfrac{2}{7}\) - 4\(\dfrac{3}{6}\)
= (1 + 2 + \(\dfrac{5}{7}\) + \(\dfrac{2}{7}\)) + ( 7 + \(\dfrac{3}{6}\) - 4 - \(\dfrac{3}{6}\))
= 3 + 1 + 3
= 7
has watched
do-do
went-stayed
listens
doesn't play
is often
have been-wee
had walked
had finished
had moved