K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

2x² - 3x + 2 = (1/8)(16x² - 24x + 9) + 7/8 = (1/8)(4x - 3)² + 7/8 > 0 nên |2x² - 3x + 2| = 2x² - 3x + 2

|2x² - 3x + 2| = 5m - 8x - 2x²

⇔ 2x² - 3x + 2 = 5m - 8x - 2x²

⇔ 4x² + 5x + 2 - 5m = 0

Để PT có nghiệm duy nhất thì đó phải là nhiệm kép :

Δ = 25 - 16(2 - 5m) = 80m - 7 = 0 ⇔ m = 7/80

28 tháng 12 2020

........

28 tháng 12 2020

a, (1) có nghiệm duy nhất trên [-2 ; 2] khi

[-2 ; 2] khi \(\left[{}\begin{matrix}-4m=-8\\1\ge-4m>-7\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}m=2\\\dfrac{-1}{4}\le m< \dfrac{7}{4}\end{matrix}\right.\) hay m ϵ [\(\dfrac{-1}{4};\dfrac{7}{4}\)\(\cup\left\{2\right\}\)

(1) có nghiệm duy nhất trên [2 ; 3] khi

- 4 ≥ - 4m ≥ - 7 ⇔ 1 ≤ m ≤ \(\dfrac{7}{4}\) hay m ∈\(\left[1;\dfrac{7}{4}\right]\)

(1) có nghiệm duy nhất trên  [-2; -1] khi 

-4 ≤ 4m ≤ 1 hay m ∈ \(\left[\dfrac{-1}{4};1\right]\)

b, (1) có 2 nghiệm phân biệt trên [-2 ; 2] khi

-4m ∈ (-8 ; -7] ⇒ m ∈\(\)[\(\dfrac{7}{4}\); 2)

(1) có 2 nghiệm phân biệt trên [2; 3] và [-2; -1] khi m ∈ ∅

c, (1) có nghiệm trên đoạn 

[-2; 2] khi -8 ≤ -4m ≤ 1 ⇒ m ∈ \(\left[\dfrac{-1}{4};2\right]\)

[2 ; 3] khi - 4 ≥ - 4m ≥ - 7  hay m ∈\(\left[1;\dfrac{7}{4}\right]\)

[-2 ; -1] khi -4 ≤ 4m ≤ 1 hay m ∈ \(\left[\dfrac{-1}{4};1\right]\)

d, dường như là nó giống câu b,

e, (1) vô nghiệm trên đoạn [-2 ; 2] khi 

\(\left[{}\begin{matrix}-4m>1\\-4m< -8\end{matrix}\right.\)hay \(m\in\left(-\infty;\dfrac{-1}{4}\right)\cup\left(2;+\infty\right)\)

(1) vô nghiệm trên đoạn [2; 3] khi 

m ∈ R \ \(\left[1;\dfrac{7}{4}\right]\)

(1) vô nghiệm trên [-2 ; -1] khi m ∈ R \ \(\left[\dfrac{-1}{4};1\right]\)

Có sai sót xin thông cảm

P/s :Bạn tự vẽ bảng biến thiên nha, nhớ chia khoảng cách các giá trị của x cho chuẩn vào, nhớ thêm cả f(0) và trong bảng nhá

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

11 tháng 8 2019

Đáp án C

NV
23 tháng 4 2021

 \(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)

\(\Rightarrow VT>VP\)  ; \(\forall x\)

\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm

b.

\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)

\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)

Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)

Để nghiệm pt dương

\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)