K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

PT\(\Leftrightarrow\left(x^2-4x+5\right)+3\sqrt{x^2-4x+5}-2m-2=0\)

Đặt: \(a=x^2-4x+5\left(a\ge1\right)\)

Pt trở thành: \(a^2+3a-2m-2=0\)

Pt trên có nghiệm khi:
\(\Delta\ge0\Leftrightarrow9+4\left(2m+2\right)\ge0\Leftrightarrow m\ge-\dfrac{17}{8}\)

24 tháng 3 2022

\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)

 với mọi m => pt có 2 nghiệm phân biệt x1 và x2

theo Viet (điều kiện m > -1/2)

\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)

\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)

dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)

5 tháng 1 2021

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

5 tháng 1 2021

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

15 tháng 8 2016

Bài toán bạn định hỏi, theo tác giả nói, có đúng 3 nghiệm phân biệt. 
Để phương trình \(x^2-2mx-4\left(m^2+1\right)=0\) luôn có 2 nghiệm phân biệt (vì \(\Delta^'=m^2+4\left(m^2+1\right)=5m^2+4>0.\))

Xét phương trình thứ hai  \(x^2-4x-2m\left(m^2+1\right)=0\). Nếu phương trình này vô nghiệm thì pt đã cho có tối đa 2 nghiệm, mâu thuẫn. Vậy phương trình thứ 2 có nghiệm kép hoặc có 2 nghiệm phân biệt.

Xét trường hợp phương trình thứ hai có nghiệm kép, tức 
\(4+2m^3+2m=0\to m^3+m+2=0\to\left(m+1\right)\left(m^2-m+2\right)=0\)
Do đó \(m=-1.\)  Thử lại, không thoả mãn vì phương trình đầu có nghiệm x=2.

Nếu phương trình thứ hai có hai nghiệm phân biệt thì hai phương trình phải có nghiệm chung là \(x_0\), do đó 
\(x^2_0-4x_0-2m\left(m^2+1\right)=0\) và \(x_0^2-2mx_0-4\left(m^2+1\right)=0\). Trừ hai phương trình ta được \(\left(2m-4\right)x_0=\left(2m-4\right)\left(m^2+1\right)\). Do đó \(m=2\) hoặc \(x_0=m^2+1.\) Khi \(m=2\) thì hai phương trình trùng nhau nên phương trình đã cho có đúng 2 nghiệm phân biệt, loại. Giả sử \(x_0=m^2+1.\)Khi đó \(\left(m^2+1\right)^2-4\left(m^2+1\right)-2m\left(m^2+1\right)=0\to m^2+1-4-2m=0\)
\(m^2-2m-3=0\to m=-1,3.\)

Thử lại ta thấy \(m=-1,3\) đều thoả mãn.

a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)

\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)

=>-16m>=-28

hay m<=7/4

b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)

\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)

=>4m-3=0

hay m=3/4

c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)

=>-16m+4<0

hay m>1/4

16 tháng 3 2021

a, x2 - (3 - 2m)x + m2 = 0

\(\Delta\) = [-(3 - 2m)]2 - 4.1.m2 = 9 - 12m + 4m2 - 4m2 = 9 - 12m

Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 9 - 12m = 0 \(\Leftrightarrow\) m = \(\dfrac{3}{4}\)

Vậy ...

b, x2 + (2m + 1)x + m2 = 0

\(\Delta\) = (2m + 1)2 - 4.1.m2 = 4m2 + 4m + 1 - 4m2 = 4m + 1

Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 4m + 1 = 0 \(\Leftrightarrow\) m = \(\dfrac{-1}{4}\)

Vậy ...

Chúc bn học tốt!

16 tháng 3 2021

Câm ơn bạn

a: \(\text{Δ}=\left(-5\right)^2-4\left(-2m+5\right)\)

=25+8m-20=8m+5

Để phương trình có nghiệm kép thì 8m+5=0

=>m=-5/8

=>x^2-5x+25/4=0

=>x=5/2

b: \(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2m+3\right)\)

\(=4m^2-4m+1-4m^2+8m-12=4m-11\)

Để phương trình có nghiệm kép thì 4m-11=0

=>m=11/4

=>x^2-9/2x+81/16=0

=>x=9/4

c: TH1: m=-3

=>-(2*(-3)+1)x+(-3-1)=0

=>-(-5x)-4=0

=>5x-4=0

=>x=4/5(nhận)

TH2: m<>-3

\(\text{Δ}=\left(2m+1\right)^2-4\left(m+3\right)\left(m-1\right)\)

\(=4m^2+4m+1-4\left(m^2+2m-3\right)\)

\(=4m^2+4m+1-4m^2-8m+12=-4m+13\)

Để phương trình có nghiệm kép thì -4m+13=0

=>m=13/4

=>25/4x^2-15/2x+9/4=0

=>(5/2x-3/2)^2=0

=>x=3/2:5/2=3/2*2/5=3/5

20 tháng 2 2022

\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-2m+1-2m+3=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)

Vậy pt luôn có 2 nghiệm x1;x2

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=2\)

Thay vào ta đc \(4\left(m-1\right)^2-4\left(2m-3\right)=2\Leftrightarrow4m^2-8m+4-8m+12=2\)

\(\Leftrightarrow4m^2-16m+14=0\Leftrightarrow m=\dfrac{4\pm\sqrt{2}}{2}\)

a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)

\(=4m^2+4m+1-4m^2-12m\)

\(=-8m+1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-8m+1>0\)

\(\Leftrightarrow-8m>-1\)

hay \(m< \dfrac{1}{8}\)

NV
17 tháng 12 2020

\(\Leftrightarrow\sqrt{5m^2-2m-2}+m-1=\dfrac{-x^2+x+3}{\left(x+1\right)^3}\)

\(\Leftrightarrow\sqrt{5m^2-2m-2}+m-4=\dfrac{-x^2+x+3}{\left(x+1\right)^3}-3\)

\(\Leftrightarrow\sqrt{5m^2-2m-2}+m-4=\dfrac{-x\left(x+2\right)\left(3x+4\right)}{\left(x+1\right)^3}\ge0\) ; \(\forall x\in\left(-1;0\right)\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\sqrt{5m^2-2m-2}\ge4-m\)

- Với \(m\ge4\) BPT luôn đúng

- Với \(m< 4\Leftrightarrow5m^2-2m-2\ge m^2-8m+16\)

\(\Leftrightarrow2m^2+3m-9\ge0\) 

Vậy \(\left[{}\begin{matrix}m\le-3\\m\ge\dfrac{3}{2}\end{matrix}\right.\)