K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

Áp dụng Pytago: \(BC=\sqrt{AB^2+AC^2}=10(cm)\)

Vì E là trung điểm BC nên AE là trung tuyến ứng cạnh huyền BC của \(\Delta ABC\)

Do đó \(AE=\dfrac{1}{2}BC=5(cm)\)

16 tháng 11 2021

BC=10cm

EF=5cm

16 tháng 11 2021

Cho mình xin cách giải chi tiết với đc k 

17 tháng 11 2021

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Vì E,F là trung điểm AB,AC nên EF là đtb tg ABC

Do đó \(EF=\dfrac{1}{2}BC=5\left(cm\right)\)

17 tháng 11 2021

Áp dụng PI-ta-go ta có:\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Vì E,F là trung điểm của AB,AC \(\Rightarrow\) EF là đường trung bình trong tam giác ABC \(\Rightarrow EF=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

 

6 tháng 9 2021

a) Xét tam giác ABC vuông tại A có

\(BC^2=AB^2+AC^2\)(Định lý Pytago)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)

b) Ta có: A là trung điểm BD( do AD=AB)

              \(CA\perp BD\)( do tam giác ABC vuông tại A)

=> CA là đường trung trực của đoạn thẳng BD

=> \(\left\{{}\begin{matrix}CD=CB\\\widehat{BCE}=\widehat{DCE}\end{matrix}\right.\)

Xét tam giác BEC và tam giác DEC có

CD=CB(cmt)

\(\widehat{BCE}=\widehat{DCE}\left(cmt\right)\)

CE chung

=> ΔBEC=ΔDEC(c.g.c)

 

a: Áp dụng tính chất của dãy tỉ số bằng nhau vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔHAC\(\sim\)ΔABC(cmt)

nên \(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{6}=\dfrac{8}{10}=\dfrac{4}{5}\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

a) Xét ΔHAC vuông tại H và ΔABC vuông tại A có 

\(\widehat{ACH}\) chung

Do đó: ΔHAC\(\sim\)ΔABC(g-g)

1 tháng 12 2016

chịu@@@@@@@@@@@@@@@@@@

1 tháng 12 2016

cũng biết làm nhưng ko 

a: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc FAE

Do đó: AEDF là hình vuông

b: ΔDEB vuông tại E

mà EM là trung tuyến

nên EM=MD

=>góc EMD=2*góc ABC

 

a: AC=8cm

Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: \(\widehat{ABD}=90^0\)

b: Xét ΔAMB và ΔDMC có

MA=MD

MB=MC

AB=DC

Do đó: ΔAMB=ΔDMC

Xét ΔABC và ΔBAD có

BA chung

BC=AD

AC=BD

Do đó: ΔABC=ΔBAD

c: Xét tứ giác AEDF có 

AE//DF

AE=DF

Do đó AEDF là hình bình hành

Suy ra: HAi đường chéo AD và EF cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của AD

nên M là trung điểm của FE

hay F,M,E thẳng hàng

17 tháng 7 2020

A B E D C M

a, Xét hai tam giác vuông ABC và tam giác vuông EBD có

               góc BAC = góc BED = 90độ

               BD = BC [ gt ]

               góc ABC = góc EBD [ đối đỉnh ]

Do đó ; tam giác ABC = tam giác EBD [ cạnh huyền - góc nhọn ]

\(\Rightarrow\)BA = BE  [ cạnh tương ứng ]

\(\Rightarrow\)tam giác ABE cân tại B

\(\Rightarrow\widehat{BAE}=\widehat{BEA}=\frac{180^0-\widehat{ABE}}{2}\)     [ 1 ]

Vì BC = BD [ gt ]

\(\Rightarrow\)tam giác CBD cân tại B 

\(\Rightarrow\widehat{BCD}=\widehat{BDC}=\frac{180^0-\widehat{CBD}}{2}\)      [ 2 ]

Ta có ; góc ABE = góc CBD [ đối đỉnh ]                 [ 3 ]

Từ [ 1 ] , [ 2 ] và [ 3 ] suy ra

góc BAE = góc BEA = góc BCD = góc BDC 

Ta thấy ;  góc BAE = góc BDC [ ở vị trí so le trong ]

Vậy AE // CD