Cho x tỉ lệ nghịch với y theo hệ số a ; y tỉ lệ nghịch với z theo hệ số b .
Hỏi x tỉ lệ thuận hay tỉ lệ nghịch với z ? tìm hệ số tỉ lệ ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo đề ra ta có:
$xz=a; zy=b; yx=a$
t là số nào trong này hả bạn?
a: x tỉ lệ nghịch với y theo hệ số tỉ lệ k nên xy=k
y tỉ lệ thuận với z theo hệ số tỉ lệ a nên y=az
=>\(az=\dfrac{k}{x}\)
=>azx=k
=>zx=k/a
Vậy: z tỉ lệ nghịch với x theo hệ số k/a
b: x tỉ lệ nghịch với y theo hệ số k nên xy=k
y tỉ lệ nghịch với z theo hệ số a nên yz=a
\(\Leftrightarrow\dfrac{k}{x}\cdot z=a\)
=>\(\dfrac{kx}{z}=a\)
=>x/z=k/a
\(\Leftrightarrow x=\dfrac{k}{a}\cdot z\)
Vậy: x tỉ lệ thuận với z theo hệ số k/a
c: x tỉ lệ thuận với y theo hệ số k nên x=ky
y tỉ lệ thuận với z theo hệ số a nên y=az
\(\Leftrightarrow az=\dfrac{x}{k}\)
=>x=akz
=>x tỉ lệ thuận với z theo hệ số ak
x và z là hai đại lượng tỉ lệ thuận với hệ số tỉ lệ là k=a/b
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên y = \(\dfrac{a}{x}\)
Vì x tỉ lệ nghịch với z theo hệ số tỉ lệ b nên x = \(\dfrac{b}{z}\)
Do đó, \(y = \dfrac{a}{x} = \dfrac{a}{{\dfrac{b}{z}}} = a:\dfrac{b}{z} = a.\dfrac{z}{b} = \dfrac{a}{b}.z\) ( \(\dfrac{a}{b}\) là hằng số vì a,b là các hằng số)
Vậy y có tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\).
a: x tỉ lệ nghịch với y theo hệ số tỉ lệ k=2
b: x tỉ lệ nghịch với y theo hệ số tỉ lệ k=5
`a,` vì `y` tỉ lệ nghịch với `x` theo hệ số tỉ lệ `K=2 -> y= 2/x`
`-> x = 2/y`
Vậy, `x` tỉ lệ nghịch với `y` theo hệ số tỉ lệ `K=2`
`b,` `y` tỉ lệ nghịch với `x` theo hệ số tỉ lệ `K=5 -> y=5/x`
`-> x=5/y`
Vậy, `x` tỉ lệ nghịch với `y` theo hệ số tỉ lệ `K=5`
3)
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8 nên xy=0,8 (1)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5 nên xz=0,5 (2)
Từ (1) và (2) suy ra xy/xz=0,8*0,5 hay y/z=0,4 suy ra y=0,4*z
Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 0,4
Bài 1
\(x\) tỉ lệ thuận với y theo hệ số tỉ lệ là a nên \(x\) = ay
y tỉ lệ thuận với z theo hệ số tỉ lệ là b nên y = bz
Thay y = bz vào biểu thức \(x\) = ay ta có:
\(x\) = a.b.z
Vậy \(x\) tỉ lệ thuận với z theo hệ số tỉ lệ là a.b
Bài 2:
\(x\) tỉ lệ thuận với y theo hệ số tỉ lệ là m nên \(x\) = my
y tỉ lệ thuận với z theo hệ số tỉ lệ nghịch là n nên y = \(\dfrac{n}{z}\)
Thay y = \(\dfrac{n}{z}\) vào biểu thức \(x\) = m.y ta có:
\(x\) = m.\(\dfrac{n}{z}\)
\(x\) = \(\dfrac{m.n}{z}\)
Vậy \(x\) tỉ lệ nghịch với z theo hệ số tỉ lệ là m.n
Lời giải:
Theo bài ra ta có:
$xy=a$
$yz=b$
$\Rightarrow \frac{xy}{yz}=\frac{a}{b}$ hay $\frac{x}{z}=\frac{a}{b}$
$\Rightarrow x=\frac{a}{b}.z$
Vậy $x$ tỉ lệ thuận với $z$ theo hệ số tỉ lệ $\frac{a}{b}$