K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

\(A=3+3^2+3^3+...3^{2006}\)

\(3A=3^2+3^3+...+3^{2007}\)

\(3A-A=\left(3^2-3^2\right)+....+\left(3^{2006}-3^{2006}\right)+3^{2007}-3\)

\(2A=3^{2007}-3\Rightarrow2A+3=3^{2007}-3+3=3^{2007}=3^x\)

Vậy x = 2007 

28 tháng 2 2016

A=3+3^2+....+3^2006

=>3A=3^2+3^3+....+3^2007

=>3A-A=(3^2+3^3+....+3^2007)-(3+3^2+....+3^2006)

=>2A=3^2007-3

khi đó 2A+3=3^2007-3+3=3^2007=3^x

=>x=2007

18 tháng 11 2021

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2021}\\ \Rightarrow3A-A=3^2+3^3+...+3^{2021}-3-3^2-3^3-...-3^{2020}\\ \Rightarrow2A=3^{2021}-3\\ \Rightarrow2A+3=3^{2021}=3^x\\ \Rightarrow x=2021\)

24 tháng 12 2021

\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)

 

29 tháng 12 2022

bạn hình như viết sai đề

 

16 tháng 12 2021

\(A=1+3+3^2+3^3+...+3^{102}+3^{103}\)

\(\Rightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{102}+3^{103}\right)\)

\(\Rightarrow A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{102}\left(1+3\right)\)

\(\Rightarrow A=\left(1+3\right)\left(1+3^2+...+3^{102}\right)\)

\(\Rightarrow A=4\left(1+3^2+...+3^{102}\right)⋮4\)

15 tháng 2 2017

8 tháng 2 2022

\(A=3+3^2+3^3+...+3^{2012}\\ A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\\ A=120+...+3^{2008}.120\\ A=120.\left(1+...+3^{2008}\right)⋮120\)

8 tháng 2 2022

undefined

6 tháng 11 2023

\(A=3^0+3^1+3^2+...+3^{138}\)

\(3\cdot A=3^1+3^2+3^3+...+3^{139}\)

\(A=(3^{139}-3^0):2\)

\(A=\left(3^{139}-1\right):2\)

6 tháng 11 2023

Đặt A = 1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸

⇒ 3A = 3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹

⇒ 2A = 3A - A

= (3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹) - (1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸)

= 3¹³⁹ - 1

⇒ A = (3¹³⁹ - 1)/3

⇒ 1 + 3 + 3¹ + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸

= (3¹³⁹ - 1)/3 + 3

= (3¹³⁹ + 2)/3

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$