3+2 =
76+65
289+982
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`48/10 = 24/5=4,8`
`213/10=213:10=21,3`
`3/1000=3:1000=0,003`
`25/1000 = 25:1000=0,025`
`647/100=647:100=6,47`
`982/100=982:100=9,82`
`385/10000=385:10000=0,0385`
`982/1000=0,982`
a, \(\dfrac{48}{10}\)=4,8 ; b, \(\dfrac{213}{10}\)=2,13 ; c, \(\dfrac{3}{1000}\)=0,003 ; d,\(\dfrac{25}{1000}\)=0,025 ; e,\(\dfrac{647}{100}\)=6,47; f,\(\dfrac{982}{100}\)=9,82 ; g,\(\dfrac{385}{10000}\)=0,0385 ;h,\(\dfrac{982}{1000}\)=0,0982
Lời giải:
$860244:2=430122$
$376982:3=125660$ dư 2
$207516:5=41503$ dư 1
$844963:7=120709$
\(1,\Rightarrow3^{x-3}=\left(3^2\right)^8:\left(3^3\right)^5=3^{16}:3^{15}=3^1\\ \Rightarrow x-3=1\\ \Rightarrow x=4\\ 2,\Rightarrow7^x\left(1+7^2\right)=350\\ \Rightarrow7^x=\dfrac{350}{50}=7=7^1\\ \Rightarrow x=1\)
\(3,\Rightarrow2^{2+2x+2}-2^{2x}=240\\ \Rightarrow2^{2x}\left(2^4-1\right)=240\\ \Rightarrow2^{2x}=\dfrac{240}{15}=16=2^4\\ \Rightarrow2x=4\Rightarrow x=2\)
Bài 2: Tính bằng cách thuận tiện nhất:
a) 239 x 45 + 55 x 239 b) 459 x 107 – 7 x 459
= 239 x (45 + 55) = 459 x (107 - 7)
= 239 x 100 = 495 x 100
= 23900 = 49500
c) 784 x 98 +784 +784 d) 982 x 1003 – 982 x2 – 982
= 784 x 98 + 784 x 2 = 982 x (1003 -2 -1)
= 784 x (98+2) = 982 x 1000
= 784 x 100 = 982000
= 78400
a: A=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)
=100+99+98+...+2+1
=5050
b: \(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)\)+1
\(=2^{64}-1+1=2^{64}\)
\(A=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\\ A=100+99+99+98+...+2+1\\ A=\left(100+1\right)\left(100-1+1\right):2=5050\)
\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^1-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1=2^{128}-1+1=2^{128}\)
\(C=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\\ C=2c^2\)
a: \(A=\left(100-99\right)\left(100+99\right)+\left(98+97\right)\left(98-97\right)+....+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1\)
=5050
b: \(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{64}-1\right)\cdot\left(2^{64}+1\right)+1\)
\(=2^{128}-1+1=2^{128}\)
a. \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+...+3\)
\(=\dfrac{\left(199+3\right)\left(\dfrac{199-3}{4}+1\right)}{2}=5050\)
b. \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=2^{128}-1+1=2^{128}\)
c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-2b^2-4ab\)
\(=2c^2\)
3+2=5
76+65=141
289+982=1271
3+2=5
76+65=141
289+982=1271