K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

10^6 - 5^7

= 5^6 * 2^6 - 5^7

= 5^6 * (2^6 - 5)

= 5^6 * 59

Vậy 106 - 57 chia hết cho 59 

13 tháng 12 2018

106 - 57 = (2.5)6 - 56.5 = 26.56 - 56.5=56.(26 - 5)=56.59⋮ 59

18 tháng 7 2016

 439 + 440 + 441 chia hết cho 28

Ta có : 28 = 4 x 7

Gọi B = 439 + 440 + 441

B = 439 + 440 + 441

B = 439 (  1 + 4 + 16 )

B = 439 21 chia hết cho 4 và 7 vì 439 chia hết cho 4 và 21 chia hết cho 7

=> B chia hết cho 28

18 tháng 7 2016

Ta có 106 - 57 = 26 . 56 - 57

= 56 . (26 - 5)

= 56 . (64 - 5)

= 56 . 59 chia hết cho 59

Vậy 106 - 57 chia hết cho 59

6 tháng 12 2016

Vì 57 ,81 chia hết cho 3, 200 không chia hết cho 3

\(\Rightarrow\)57+81+200 không chia hết cho 3 (vì 200 không chia hết cho 3 nên tổng không chia hết cho 3)

Vậy 57+81+200 không chia hết cho 3

9 tháng 12 2016

Vì 200 không chia hết cho 3 nên 57 +81+200 không chia hết cho 3

23 tháng 4 2023

Ta có S = 1 + 3 + 32 + 33 + ... + 357

3S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 356 + 357 )

= 1( 1 + 3 ) + 32( 1 + 3 ) + ... + 356( 1 + 3 )

= 1 . 4 + 32 . 4 + ... + 356 . 4

= 4( 1 + 32 + ... + 356 ) ⋮ 4

Vậy A ⋮ 4

Lại có S = 1 + 3 + 32 + 33 + ... + 357 

S - 1 = 3 + 32 + 33 + ... + 357 

         = ( 3 + 32 + 33 ) + ( 34 + 3+ 36 ) + ... + ( 355 + 356 + 357 )

         = 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) + ... + 355( 1 + 3 + 32 ) 

         = 3 . 13 + 34 . 13 + ... + 355 . 13

         = 13( 3 + 34 + ... + 355 ) ⋮ 13

Vậy ( S - 1 ) ⋮ 13 ⇒ S không chia hết cho 13

Ta có S = 1 + 3 + 32 + 33 + ... + 357

3S = 3 + 32 + 33 + 34 + ... + 358

3S - S = ( 3 + 32 + 33 + 34 + ... + 356 ) - ( 1 + 3 + 32 + 33 + ... + 357 )

2S = 358 - 1 = 356 . 9 - 1 = ( 34 )14 . 9 - 1 = 8114 . 9 - 1 = ( ...9 ) - 1 = ( ...8 )

S = ( ...8 ) : 2 = ( ...4 )

Vậy chữ số tận cùng của S là 4

 
23 tháng 4 2023

mn giúp mình với

16 tháng 7 2016

không trả lời

22 tháng 10 2020

\(S=1+3+...+3^{59}=\left(1+3+3^2+3^3\right)+...+\left(5^{56}+..+5^{59}\right)\)

\(=40+3^4.40+3^8.40+...+3^{56}.40\text{ chia het cho 40 nen chia het cho 10}\)

16 tháng 12 2015

Đặt tổng trên là A

Ta có: \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{59}.\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)\)chia hết cho 3

=> A chia hết cho 3 (Đpcm).

16 tháng 12 2015

Ta có :

2+2^2+2^3+2^4+...+2^59+2^60=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

                                            =2x3+2^3x3+...+2^59x3

                                            =(2+2^3+...+2^59)x3

Vì 3 chia hết cho 3 nên tổng trên chia chiết cho 3 (đpcm)