Cho tam giác ABC có AB=AC. Lấy E là trung điểm của BC
a) Chứng minh tam giác ABE=tam giác ACE
b) Lấy D thuộc tia đối của tia EA sao cho ED=EA. Chứng Minh AC//BD
c) Kẻ EM vuông góc với AB; EN vuông góc với DC (M thuộc AB, N thuộc CD)
Chứng minh EM=EN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔACE có
AB=AC
AE chung
BE=CE
Do đó: ΔABE=ΔACE
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(Cạnh huyền-góc nhọn)
A) XÉT ΔABD VUÔNG TẠI D, ΔACE VUÔNG TẠI E
CÓ; AB=AC (ΔABC CÂN TẠI A)
\(\widehat{BAC}\) : GÓC CHUNG
⇒ΔABD= ΔACE (C.HUYỀN-G.NHỌN)
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
.Vì E là trung điểm BC, E là trung điểm AD
→ΔAEB=ΔDEC(c.g.c)→ΔAEB=ΔDEC(c.g.c)
b.Tương tự ta có thể chứng minh ΔAEC=ΔDEB(c.g.c)ΔAEC=ΔDEB(c.g.c)
→ˆEAC=ˆEDB→AC//BD→EAC^=EDB^→AC//BD
c.Vì
⎧⎪⎨⎪⎩ˆEAC=ˆEDB(câub)AE=DEˆAIE=ˆEKD=90o{EAC^=EDB^(câub)AE=DEAIE^=EKD^=90o
→ΔAIE=ΔDKE(g.c.g)→ΔAIE=ΔDKE(g.c.g)
d.Từ câu c
→ˆAEI=ˆKED→AEI^=KED^
→ˆKEI=ˆKED+ˆDEI=ˆAEI+ˆDEI=ˆAED=180o→KEI^=KED^+DEI^=AEI^+DEI^=AED^=180o
→K,E,I→K,E,I thẳng hàng
c: Xét ΔBAC vuông tại B có
\(\sin C=\dfrac{AB}{AC}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{C}=30^0\)
hay \(\widehat{BAC}=60^0\)
a: Xét ΔABI vuông tại I và ΔKBI vuông tại I có
IB chung
IA=IK
Do đó: ΔABI=ΔKBI
b: Xét ΔABE và ΔFCE có
EA=EF
\(\widehat{AEB}=\widehat{FEC}\)
EB=EC
Do đó: ΔABE=ΔFCE
c: Ta có: ΔABE=ΔFCE
nên AB=FC
mà AB=BK
nên FC=BK
a) xét \(\Delta ABE\)và \(\Delta DCE\)ta có:
AE=ED(gt)
BE=EC(E là trug điểm của BC)
\(\widehat{E1}=\widehat{E2}\)(đối đỉnh)
=> \(\Delta ABE\)= \(\Delta DCE\)(c.g.c)
b) từ câu a => \(\widehat{B1}=\widehat{C2}\)(cặp góc tương ứng)
mà hai góc đó ở vị trí so le trong => AB//DC (bn viết sai đề DE)
c) xét \(\Delta ABE\)và \(\Delta ACE\)ta có:
AE là cạnh chung
AB=AC(gt)
BE=EC(E là trug điểm của BC)
=> \(\Delta ABE\)=\(\Delta ACE\)(c.c.c)
=> \(\widehat{E1}=\widehat{E3}\)(cặp góc t/ứng)
mà \(\widehat{E1}+\widehat{E3}=180^o\Rightarrow2\widehat{E1}=180^o\Rightarrow\widehat{E1}=90^o\)
=> AE vuông góc với BC (đpcm)
p/s: tớ làm 1 bài thui nha :)) dài quá
Để tui bài 2!
a) Xét tam giác AKB và tam giác AKC có:
\(AB=AC\) (gt)
\(BK=CK\) (do K là trung điểm BC)
\(AK\) (cạnh chung)
Do đó \(\Delta AKB=\Delta AKC\) (1)
b) \(\Delta AKB=\Delta AKC\Rightarrow\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) (Kề bù)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{\widehat{AKB}}{1}=\frac{\widehat{AKC}}{1}=\frac{\widehat{ABK}+\widehat{AKC}}{1+1}=\frac{180^o}{2}=90^o\)
Suy ra AK vuông góc với BC (2)
c)\(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}=45^o\) (Do \(\widehat{KAB} +\widehat{KAB}=90^o\) và \(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}\))
Mà \(\widehat{AKC}=90^o\) (CMT câu b)
Suy ra \(\widehat{KCA}=180^o-\widehat{KAC}-\widehat{AKC}=180^o-45^o-90^o=45^o\)
Mà \(\widehat{KCA}+\widehat{ACE}=90^o\) (gt,khi vẽ đường vuông góc BC cắt AB tại E)
Suy ra \(\widehat{ACE}=90^o-\widehat{KCA}=90^o-45^o=45^o\)
Hay \(\widehat{KCA}=\widehat{ACE}=45^o\).Mà hai góc này ở vị trí so le trong,nên: \(EC//AK\) (3)
Từ (1),(2) và (3) ta có đpcm.
a: Xét ΔABE và ΔACE có
AB=AC
AE chung
BE=CE
Do đó: ΔABE=ΔACE