Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng 6 số tự nhiên liên tiếp chia hết cho 6.
giúp mik với các bn, cần Gấp
Vì a;a+1;...+a+5 là 6 số tự nhiên liên tiếp
nên \(a\left(a+1\right)\cdot...\cdot\left(a+5\right)⋮6!\)
hay \(a\left(a+1\right)\cdot...\cdot\left(a+5\right)⋮6\)
Vì a;a+1;...+a+5 là 6 số tự nhiên liên tiếp
nên \(a\left(a+1\right)\cdot...\cdot\left(a+5\right)⋮6!\)
hay \(a\left(a+1\right)\cdot...\cdot\left(a+5\right)⋮6\)