A = (x + y)(y + z)(z + x)
Tính A biết xyz = 10 và x+y+z=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo cô-si ta có
\(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(x+z\ge2\sqrt{xz}\)
nhân vế với vế ta có
\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}\times2\sqrt{yz}\times2\sqrt{xz}\)
\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{x^2y^2z^2}=8xyz\)
mà xyz=2 suy ra
\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\times2=16\)
vậy GTNN của A=16
Ta có: x+y + z = 0 => x = -y-z (1) ; y= -x-z (2); z = -y-x (3)
Thay (1); (2); (3) vào A = (x+y)(y+z)(x+z), có:
A = (-y-z+y)(-x-z+z)(x - y - x) = (-z)(-x)(-y) = -(xyz) = -2
Vậy khi xyz = 2 và x+y+z = 0 thì giá trị biểu thức A = (x+y)(y+z)(x+z) là -2
Vì x+y+z=0
=> \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
Ta có \(A=\frac{x}{y+z-x}+\frac{y}{x+z-y}+\frac{z}{x+y-z}\)
\(=\frac{x}{-x-x}+\frac{y}{-y-y}+\frac{z}{-z-z}=\frac{x}{-2x}+\frac{y}{-2y}+\frac{z}{-2z}\)
\(=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}=\frac{-3}{2}\)
Ta có : \(x+y+z=0\)
=>\(x+y=-z\)
\(y+z=-x\)
\(x+z=-y\)
=> \(B=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz=-2\)
x+y+z=0
=>x+y=-z
y+z=-x
z+x=-y
mà A=(x+y)(y+z)(z+x)
nên A=-z*(-x)*(-y)=z*x*y*(-1)=10*(-1)=-10
Vậy A=-10