K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2021

a,phương trình có nghiệm

`<=>\Delta>=0`

`<=>4m^2-4(m^2-m+2)>=0`

`<=>4m^2-4m^2+4m-8>=0`

`<=>4m>=8`

`<=>m>=2`

b,Áp dụng định lý vi-ét ta có:

`x_1+x_2=-b/a=2m`

`x_1.x_2=c/a=-m^2-m+2`

4 tháng 3 2022

a,để pt có nghiệm kép 

 \(\Delta=m^2-\left(m^2-m+1\right)=m-1=0\Leftrightarrow m=1\)

\(x_1=x_2=\dfrac{2m}{2}=m=1\)

b, để pt có nghiệm \(m\ge1\)

c, Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=6\)

Thay vào ta đc \(4m^2-4\left(m^2-m+1\right)=6\)

\(\Leftrightarrow4m=10\Leftrightarrow m=\dfrac{5}{2}\left(tm\right)\)

a) Thay m=-2 vào phương trình, ta được:

\(x^2+4x+3=0\)

a=1; b=4; c=3

Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)

a: \(\text{Δ}=\left(-6\right)^2-4\left(m+1\right)=-4m-4+36=-4m+32\)

Để phương trình có nghiệm thì -4m+32>=0

=>-4m>=-32

hay m<=8

b: Theo Vi-et,ta được:

\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=m+1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

\(\Leftrightarrow36-2\left(m+1\right)=20\)

=>2(m+1)=16

=>m+1=8

hay m=7(nhận)

 

26 tháng 5 2022

`a)` Ptr có nghiệm`<=>\Delta' >= 0`

                             `<=>(-3)^2-(m+1) >= 0`

                             `<=>9-m-1 >= 0<=>m <= 8`

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`b)`Với `m <= 8`, áp dụng Viét có:`{(x_1+x_2=[-b]/a=6),(x_1.x_2=c/a=m+1):}`

Ta có:`x_1 ^2+x_2 ^2=20`

`<=>(x_1+x_2)^2-2x_1.x_2=20`

`<=>6^2-2(m+1)=20`

`<=>36-2m-2=20`

`<=>2m=14<=>m=7` (t/m)

a) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1+1^2-1=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì tập nghiệm của phương trình là S={1}

NV
26 tháng 12 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+3m-2\right)=-m+3\)

a. Phương trình có nghiệm khi:

\(\Delta'\ge0\Rightarrow m\le3\)

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3m-2\end{matrix}\right.\)

c.

\(x_1^2+x_2^2-x_1x_2=22\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=22\)

\(\Leftrightarrow4\left(m+1\right)^2-3\left(m^2+3m-2\right)=22\)

\(\Leftrightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\left(loại\right)\\m=-3\end{matrix}\right.\)

26 tháng 9 2017

Chọn C

Đặt  t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:

t2+ 2(1-m) t+ m2- 3 m+2= 0  (2)

pt (1) có 2 nghiệm thỏa  mãn x1< 1< x2 khi và chỉ khi  pt (2) có 2 nghiệm:  t1< 0 < t2  suy ra P < 0

Hay m2- 3m+ 2 < 0

Do đó:  1 <  m < 2

Kết luận: với 1< m< 2 thì pt (1) có hai nghiệm  x1< 1< x2

4 tháng 12 2019

Chọn D

Đặt  t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:

t2+ 2(1-m) t+ m2- 3 m+2= 0  (2)

pt (1) có 2 nghiệm thỏa  x1< x2< 1 khi  và chỉ khi  pt (2) có 2 nghiệm:

(vô nghiệm)

Kết luận: không tồn tại m thỏa mãn bài toán.

a: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(m^2-4m+5\right)\)

\(=4\left(m+1\right)^2-4\left(m^2-4m+5\right)\)

\(=4m^2+8m+4-4m^2+16m-20\)

=24m-16

Để phương trình có hai nghiệm thì Δ>=0

=>24m-16>=0

=>24m>=16

=>\(m>=\dfrac{2}{3}\)

b: Bạn xem lại đề nha bạn

30 tháng 1

dạ câu b đổi lại thành + ý ạ