Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-2mx+2m^2-m=0\)
\(\Delta'=m^2-\left(2m^2-m\right)=-m^2+m\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'=-m^2+m>0\Leftrightarrow0< m< 1\)
Vậy : ...........
b) Bạn xem lại đề bài nhé, mình thấy không ổn.
Bài 1:
a: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Theo đề, ta có: \(\left(2m\right)^2=2m-1+7=2m+6\)
\(\Leftrightarrow4m^2-2m-6=0\)
\(\Leftrightarrow4m^2-6m+4m-6=0\)
=>(4m-6)(m+1)=0
=>m=-1 hoặc m=3/2
b/ x22 + x2 = x12 + x1
Chuyển thành --> x12 + x1 - x2 -x22 = 0
x12 -x22 ( Hằng đẳng thức) = (x1-x2)(x1+x2)
x1-x2=0
Có được (x1-x2)(x1+x2) -(x1+x2)=0
Thay vi - et vào ta có ( x1-x2) ( 2m) - ( 2m) =0
x1-x2=0
( x1-x2)2 =02
(x1+x2)2 -4x1.x2 =0
---> Thay vi-et vào được 4m2 -16=0 --> m= +2 và -2 ( xem điều kiện câu a để nhận hay loại)
a) Vì \(x=-2\)là một nghiệm của phương trình
\(\Rightarrow\)Thay \(x=-2\)vào pt(1) ta được:
\(\left(-2\right)^2-2.m.\left(-2\right)+4=0\)\(\Leftrightarrow4+4m+4=0\)
\(\Leftrightarrow4m+8=0\)\(\Leftrightarrow4m=-8\)\(\Leftrightarrow m=-2\)
Vậy \(m=-2\)
\(\Delta\)' = (m+1)2-2m+5 = m2 +2m +1 - 2m +5 =m2 +6 >0 nên pt đã cho luôn có 2 nghiệm x1,x2 phân biệt với mọi m .
Ta có : (x12 -2mx1+2m-1)(x22 -2mx2 +2m+1)<0 (*)
Vì x1,x2 là nghiệm của phương trình 1 nên ta có :
x12 -2mx1+2x1 +2m -5 = 0 => x12 -2mx1+2m-1 +2x1 -4 =0
=>x12 -2mx1+2m-1 = 4-2x1 Tương tự ta có : x22 -2mx2+2m-1 = 4-2x2
khi đó (*) trở thành : (4-2x1)(4-2x2) <0 =>16-8x2-8x1+4x1x2 < 0
<=> 16-8(x1+x2)+4x1x2 <0
vì phương trình đầu luôn có 2 nghiệm phân biệt với mọi m nên theo hệ thức viét ta có :\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)thay vào bất pt trên ta đc :
16-8.2(m-1)+4(2m-5)<0 => 16-16m+16+8m-20<0
12-8m<0 => m>\(\dfrac{3}{2}\)
Vậy m>\(\dfrac{3}{2}\)thì có 2 nghiệm x1 x2 thỏa mãn đề bài .
a,phương trình có nghiệm
`<=>\Delta>=0`
`<=>4m^2-4(m^2-m+2)>=0`
`<=>4m^2-4m^2+4m-8>=0`
`<=>4m>=8`
`<=>m>=2`
b,Áp dụng định lý vi-ét ta có:
`x_1+x_2=-b/a=2m`
`x_1.x_2=c/a=-m^2-m+2`