Cho (O), đường kính AD vuông góc với dây BC tại I (I thuộc OD ; A thuộc ung lớn BC)
a/ Tam giác ABC là tam giác gì? Chứng minh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AIC=góc AHC=90 độ
=>AIHC nội tiếp
b: Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE
a: PM\(\perp\)MQ
MQ\(\perp\)AB
Do đó: PM//AB
Xét tứ giác PMIO có
IO//MP
\(\widehat{PMI}=90^0\)
Do đó: PMIO là hình thang vuông
b: ΔMPQ vuông tại M
=>ΔMPQ nội tiếp đường tròn đường kính PQ
mà ΔMPQ nội tiếp (O)
nên O là trung điểm của PQ
=>P,Q,O thẳng hàng
c: ΔAOC vuông tại O
=>\(OA^2+OC^2=AC^2\)
=>\(R^2+R^2=\left(a\sqrt{2}\right)^2=2a^2\)
=>\(R=a\)
Kẻ OH\(\perp\)AC
=>d(O;AC)=OH
Xét ΔOAC vuông tại O có OH là đường cao
nên \(OH\cdot AC=OA\cdot OC\)
=>\(OH\cdot a\sqrt{2}=a\cdot a=a^2\)
=>\(OH=\dfrac{a}{\sqrt{2}}\)
Vậy: Khoảng cách từ O đến AC là \(\dfrac{a\sqrt{2}}{2}\)
a: Xét (O) có
OI là một phần đường kính
AD là dây
OI\(\perp\)AD tại I
Do đó: I là trung điểm của AD
Xét ΔBAD có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBAD cân tại B
b: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó;ΔBAC vuông tại A
=>BA\(\perp\)EC
Xét tứ giác EHBA có
\(\widehat{EHB}+\widehat{EAB}=90^0+90^0=180^0\)
=>EHBA là tứ giác nội tiếp
=>E,H,A,B cùng thuộc 1 đường tròn
thế còn c,d đâu anh ??? hình vẽ ko có làm còn thiếu, có trách nhiệm với người hỏi đi anh
Xét ΔABC có
AI là đường cao
AI là đường trung tuyến
Do đó: ΔABC cân tại A