Mn ơi, hướng dẫn em cách để giống mẫu đi ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết các phân số dưới dạng tối giản:
0,3=310;−56;−123=−53;413;0;0,3=310;−56;−123=−53;413;0;−0,875=−8751000=−78−0,875=−8751000=−78
- So sánh các số hữu tỉ dương với nhau:
Ta có : 310=39130;413=40130310=39130;413=40130
Vì 39<4039<40 nên 310<413310<413
- Tương tự So sánh các số hữu tỉ âm với nhau ta được:
−56=−2024;−53=−4024;−78=−2124⇒−4024<−2124<−2024(Do−40<−21<−20)⇒−53<−78<−56−56=−2024;−53=−4024;−78=−2124⇒−4024<−2124<−2024(Do−40<−21<−20)⇒−53<−78<−56
Vậy:
Phương trình bậc hai có dạng: a\(x^2\) + b\(x\) + c
Bước 1: Đưa nó về bình phương của một tổng hoặc một hiệu cộng với một số nào đó. nếu a > 0 thì em sẽ tìm giá trị nhỏ nhất; nếu a < 0 thì em sẽ tìm giá trị lớn nhất
Bước 2: lập luận chỉ ra giá trị lớn nhất hoặc nhỏ nhất
Bước 3: kết luận
Giải:
A = 3\(x^2\) - 5\(x\) + 3 Vì a = 3 > 0 vậy biểu thức A chỉ tồn tại giá trị nhỏ nhất
A = 3\(x^2\) - 5\(x\) + 3
A = 3.(\(x\)2 - 2.\(x\).\(\dfrac{5}{6}\) + \(\dfrac{25}{36}\)) + \(\dfrac{11}{12}\)
A = 3.(\(x\) - \(\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\)
Vì (\(x-\dfrac{5}{6}\))2 ≥ 0 ⇒ 3.(\(x\) - \(\dfrac{5}{6}\))2 ≥ 0 ⇒ 3.(\(x-\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\) ≥ \(\dfrac{11}{12}\)
Amin = \(\dfrac{11}{12}\) ⇔ \(x\) = \(\dfrac{5}{6}\)
Câu c mình làm rồi: Mn ơi, hướng dẫn em cách để giống mẫu đi ạ! - Hoc24
\(d,\dfrac{x}{x^3-27}=\dfrac{x}{\left(x-3\right)\left(x^2+3x+9\right)}=\dfrac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{x+2}{x^2-6x+9}=\dfrac{x+2}{\left(x-3\right)^2}=\dfrac{\left(x+2\right)\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{x-1}{x^2+3x+9}=\dfrac{\left(x-1\right)\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(f,\dfrac{x+2}{x^2-3x+2}=\dfrac{x+2}{\left(x-1\right)\left(x-2\right)}=\dfrac{\left(x+2\right)\left(2x-3\right)}{\left(x-1\right)\left(x-2\right)\left(2x-3\right)}\\ \dfrac{x}{-2x^2+5x-3}=\dfrac{-x}{\left(2x-3\right)\left(x-1\right)}=\dfrac{-x\left(x-2\right)}{\left(2x-3\right)\left(x-1\right)\left(x-2\right)}\\ \dfrac{2x+1}{-2x^2+7x-6}=\dfrac{-\left(2x+1\right)}{\left(x-2\right)\left(2x-3\right)}=\dfrac{-\left(2x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)\left(2x-3\right)}\)
\(\dfrac{a+x}{6x^2-ax-2a^2}=\dfrac{\left(a+x\right)}{\left(2x+a\right)\left(3x-2a\right)}\)
\(\dfrac{a-x}{3x^2+4ax-4a^2}=\dfrac{a-x}{\left(x+2a\right)\left(3x-2a\right)}\)
Do đó ta quy đồng:
\(\dfrac{a+x}{6x^2-ax-2a^2}=\dfrac{\left(a+x\right)\left(x+2a\right)}{\left(x+2a\right)\left(2x+a\right)\left(3x-2a\right)}\)
\(\dfrac{a-x}{3x^2+4ax-4a^2}=\dfrac{\left(a-x\right)\left(2x+a\right)}{\left(x+2a\right)\left(2x+a\right)\left(3x-2a\right)}\)
\(a,\dfrac{a+x}{axb^3}=\dfrac{a\left(a+x\right)}{a^2xb^3};\dfrac{b+x}{a^2xb^2}=\dfrac{b\left(b+x\right)}{a^2xb^3};\dfrac{b-a}{axb^2}=\dfrac{ab\left(b-a\right)}{a^2xb^3}\\ b,\dfrac{2x+1}{x^2-4ax+4a^2}=\dfrac{x\left(2x+1\right)}{x\left(x-2a\right)^2};\dfrac{x+2a}{x^2-2ax}=\dfrac{\left(x+2a\right)\left(x-2a\right)}{x\left(x-2a\right)^2}\\ c,\dfrac{a+x}{6x^2-ax-2a^2}=\dfrac{a+x}{\left(3x-2a\right)\left(2x+a\right)}=\dfrac{\left(a+x\right)\left(x+2a\right)}{\left(3x-2a\right)\left(2x+a\right)}\\ \dfrac{a-x}{3x^2+4ax-4a^2}=\dfrac{a-x}{\left(3x-2a\right)\left(x+2a\right)}=\dfrac{\left(a-x\right)\left(2x+a\right)}{\left(3x-2a\right)\left(x+2a\right)\left(2x+a\right)}\)