Cho tam giác ABC, có góc A = 3 x góc B = 6 x góc C
a, Tìm số đo của các góc A, B, C
b, Kẻ Ad vuông góc BC, D thuộc BC. Chứng minh rằng: AD < BD < CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(\dfrac{A}{3}\) ,C=\(\dfrac{A}{6}\)
⇒\(\dfrac{A}{18}\) =\(\dfrac{B}{6}\) =\(\dfrac{C}{3}\)= và A+B+C=180o
áp dụng tính chất của dãy tỉ số =nhau ,ta có :
\(\dfrac{A}{18}\)=\(\dfrac{B}{6}\) =\(\dfrac{C}{3}\) =\(\dfrac{A+B+C}{18+6+3}\) =\(\dfrac{20}{3}\)
⇒\(\dfrac{A}{18}\) = \(\dfrac{20}{3}\)⇒ A= 20/3 x 18 = 120o
\(\dfrac{B}{6}\) =\(\dfrac{20}{3}\) ⇒ B=\(\dfrac{20}{3}\) x 6 = 40o
C = 180o-(120o+40o)=20o
a) Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
Ta có: \(\widehat{A}:\widehat{B}:\widehat{C}=6:2:1\)
nên \(\dfrac{\widehat{A}}{6}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}\)
mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(cmt)
nên \(\dfrac{\widehat{A}}{6}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{6+2+1}=\dfrac{180^0}{9}=20^0\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{\widehat{A}}{6}=20^0\\\dfrac{\widehat{B}}{2}=20^0\\\dfrac{\widehat{C}}{1}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=120^0\\\widehat{B}=40^0\\\widehat{C}=20^0\end{matrix}\right.\)
Vậy: \(\widehat{A}=120^0\); \(\widehat{B}=40^0\); \(\widehat{C}=20^0\)
a) Theo đề bài => A/3=B/6=C và A+B+C=180
Áp dụng tính chất dãy tỉ số bằng nhau =>A=54;B=108;C=18
b) Trong tam giác ABC có C<B=>AB<AC=>BD<CD
AD thì mình ko biết nữa, bạn coi lại đề coi đúng ko nhe
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
1)
Ta có :
x2 - 2x = 0
=) x ( x- 2 ) = 0
Vậy x = { 0 ; 2 )
Ta có : x 2 - 2x = 0
=> x ( x- 2 ) = 0
x = 0
x - 2 = 0
=> x = 2 Vậy x = { 0 ; 2 )