K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

Ta có: Để \(\frac{12}{3n-1}\)là số nguyên <=> 12 \(⋮\)3n - 1 <=> 3n - 1 \(\in\)Ư(12) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12}

Lập bảng :

3n -11-12-23-34-46-612-12
  n2/301-1/34/3-2/35/3-17/3-5/313/3-11/3

Vì n thuộc Z nên ...
 

30 tháng 4 2016

Gọi d thuộc ƯC (n+1,n-3) ( d thuộc N , d khác 0 )

=> n+1 chia hết cho d

n-3 chia hết cho d

=> [(n+1)-(n-3)] chia hết cho d

=> [n+1-n+3] chia hết cho d

=> 4  chia hết cho d

=> d thuộc {1;2;4}

_ Với d = 1 thì A là p/s tối giản

_ Với d =2 thì n-3 chia hết cho 2

=> n-3 = 2k

n=2k+3

_ Với d = 4 thì n-3 chia hết cho 4

=> n-3 = 4k

n=4k+3

Vậy với n khác 4k + 3 và n khác 2k+3 thì A là phân số tối giản.

21 tháng 2 2021

a,Để n nguyên thì 12 : n

                         =>nEƯ(12)

                        =>nE{1,2,3,4,6,12,-1,-2,-3,-4,-6,-12}

b,Để n nguyên thì 15:n-2

                        =>n-2EƯ(15)

                        =>n-2E{1,3,5,15,-1,-3,-5,-15}

                         =>nE{3,5,7,17,1,-1,-3,-13}

c,Để n nguyên thì 8:n

                        =>n+1EƯ(8)

                       =>n+1E{1,2,4,8,-1,-2,-4,-8}

                        =>nE{0,1,3,7,-2,-3,-5,-9}

15 tháng 2 2020

Để \(\frac{12}{n}\)có giá trị là 1 số nguyên thì 12\(⋮\)n

\(\Rightarrow n\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Vậy \(n\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Để \(\frac{15}{n-2}\)có giá trị là 1 số nguyên thì 15\(⋮\)n-2

\(\Rightarrow n-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

Ta có bảng sau :

n-2-11-33-55-1515
n13-15-37-1317

Vậy n\(\in\){-13;-3;-1;1;3;5;7;17}

Để \(\frac{8}{n+1}\)có giá trị là 1 số nguyên thì 8\(⋮\)n+1

\(\Rightarrow n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

...

15 tháng 2 2020

Để 12/n có giá trị nguyên thì n \(\in\)Ư(12)

Suy ra N\(\in\){1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

Để 15/n-12 nguyên thì (n-12)\(\in\)Ư(15)

Suy ra (n-12)\(\in\){-1;1;15;-15}

<=> N\(\in\){11;13;27;-3}

Để 8/n+1 nguyên thì (n+1)\(\in\)Ư(8)

Suy ra (n+1)\(\in\){1;-1;2;-2;4;-4;8;-8}

<=> n\(\in\){0;-2;1;-3;3;-5;7;-9}