K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Khó dữ vậy!!!!

6 tháng 5 2017

Đợi tí , mạng chậm

19 tháng 2 2019

\(A=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)

\(=\frac{3-1}{3}+\frac{9-1}{9}+\frac{27-1}{27}+...+\frac{3^n-1}{3^n}\)

\(=\left(\frac{3}{3}-\frac{1}{3}\right)+\left(\frac{9}{9}-\frac{1}{9}\right)+\left(\frac{27}{27}-\frac{1}{27}\right)+.....+\left(\frac{3^n}{3^n}-\frac{1}{3^n}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+....+\frac{1}{3^n}\right)\)

\(=n-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^n}\right)\)

Bây giờ ta chỉ cần chứng minh:\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^n}< \frac{1}{2}\) là xong!

Thật vậy:\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{n-1}}\)

\(\Rightarrow2B=1-\frac{1}{3^n}\)

\(\Rightarrow B=\frac{1}{2}-\frac{\frac{1}{3^n}}{2}< \frac{1}{2}\) 

Ta có:\(A=n-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^n}\right)\)

\(>n-\frac{1}{2}\left(đpcm\right)\)(bất đẳng thức đổi chiều)

A >1 là chắc chắn rồi cần gì phải CM nữa cho khổ

12 tháng 3 2020

thuộc n sao rồi mà

19 tháng 10 2015

tick câu trả lời tương tự đó bn

 

19 tháng 10 2015

Trần Thùy Dung có lòng mà, giúp đi

19 tháng 12 2023

Em con quá non