Cho ▲ABC có AB = AC. Kẻ BD⊥AC tại D, Kẻ CE⊥AB tại E. Gọi I là giao điểm của BD và CE. Chứng minh :
a) ▲ABC = ▲AFE.
b) ▲BEI = ▲CDI.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét 2 tam giác vuông ΔABD và ΔACE có:
AB = AC (gt);
góc A chung
⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn) (đpcm)
b, ΔABD = ΔACE ⇒ AD = AE
⇒ AC - AD = AB - AE ⇒ BE = CD
Xét 2 tam giác vuông ΔBIE và ΔCID có:
BE = CD
\(\widehat{BEI}=\widehat{CDI}\) ( đối đỉnh )
⇒ ΔBEI = ΔCDI (cạnh góc vuông - góc nhọn)
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔEBC=ΔDCB
Suy ra: BE=CD
b: Ta có: ΔEBC=ΔDCB
nên \(\widehat{ECB}=\widehat{DBC}\)
hay ΔIBC cân tại I
Ta có: AE+EB=AB
AD+DC=AC
mà AB=AC
và EB=DC
nên AE=AD
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: AI\(\perp\)BC
mà AK\(\perp\)BC
nên A,I,K thẳng hàng
=>AK,BD,CE đồng quy
Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)
góc ABC = góc ACB ( cân tại A)
BC chung
==> BD=CE
b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên
góc BCE = góc DBC
--> IBC cân tại I
bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
a) Xét tam giác ADB và tam giác AEC:
^ADB = ^AEC (=90o)
AB = AC (∆ABC cân tại A)
^A chung
=> Tam giác ADB = Tam giác AEC (ch - gn)
=> AD = AE (2 cạnh tương ứng)
=> Δ ADE cân tại A
b) Xét tam giác AED: ^A + ^AED + ^ADE = 180o (tổng 3 góc trong tam giác)
Mà ^AED = ^ADE (Δ ADE cân tại A)
=> ^A = 2 ^AED (1)
Xét tam giác ABC: ^A + ^B + ^C = 180o (tổng 3 góc trong tam giác)
Mà ^B = ^C (Δ ABC cân tại A)
=> ^A = 2 ^B (2)
Từ (1) và (2) => ^B = ^AED
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (dhnb)
c) Xét tam giác BEC và tam giác CDB:
^BEC = ^CDB (= 90o)
BC chung
^B = ^C (∆ABC cân tại A)
=> Tam giác CBE = Tam giác CDB (ch - gn)
=> IB = IC (2 cạnh tương ứng)
d) Xét tam giác ABI và tam giác ACI:
AB = AC (∆ABC cân tại A)
AI chung
IB = IC (cmt)
=> Tam giác ABI = Tam giác ACI (c - c - c)
=> ^BAI = ^CAI (2 góc tương ứng)
=> AI là phân giác ^A hay AM là phân giác ^A (M\(\in AI\))
Xét ∆ABC cân tại A có: AM là phân giác ^A (cmt)
=> AM là đường cao (TC các đường trong tam giác)
=> AM \(\perp\) BC
Điểm F ở đâu vậy bạn?
cái này là ace nhá
ko phải là afe