c/m voi n so tu nhien thi n^5 va n co chu so tan cung giong nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cm : n^5-n có chữ số tận cùng = 0
Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\\ n⋮2\Rightarrow A⋮2\\ nko⋮2\Rightarrow n^2-1;n^2+1⋮2\Rightarrow A⋮2\)
\(n⋮3\Rightarrow A⋮3\\ nko⋮3\\ \Rightarrow n^2chia3duw1\\ \Rightarrow n^2-1⋮3\\ \Rightarrow A⋮3\)
\(n⋮5\Rightarrow A⋮5\\ nko⋮5\Rightarrow n^2chia5du1;4\\ n^2:5du1\\ \Rightarrow n^2-1⋮5\\ \Rightarrow A⋮5\\ n^2:5du4\\ \Rightarrow n^2+1⋮5\\ \Rightarrow A⋮5\)
(2;3;5) ntoCN từng đôi => n^5-n chia hết cho 30
=> n^5-n có t/c = 0
=> đpcm
Gọi số đó là:aa,ta có:
Để aa chia cho 5 dư 3 thì a bằng 3 hoặc 8,nhưng aa chia hết cho 2 thì a=8
=> aa=88
Vậy số đó là:88
Trong 11 số tự nhiên bất kì, số dư của chúng khi chia cho 10 có 10 chữ số sau 0;1;2;3;4;5;6;7;8;9
Và có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10
Vậy hiệu 2 số này sẽ chia hết cho 10
Mà những chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 số tự nhiên bất kì luôn có hai số có chữ số tận cùng giống nhau (đpcm).
Gọi 11 số đó là a1,a2..a11
Đem chia 11 số đó cho 10
Vì có 11 phép chia mà chỉ cho 10 số dư
\(\Rightarrow\)có 2 số cx số dư khi chia cho 10
Gọi 2 số đó là d\(_k\) và d\(_j\)\(\Rightarrow\)d\(_k\) và d\(_j\) chia hết cho 10(đpcm)
Gọi 11 số đó là a1, a2,...,a11
Đem chia 11 số đó cho 10
Vì có 11 phép chia mà chỉ cho 10 số dư
=> Có 2 số có chung số dư khi chia cho 10
Gọi 2 số đó là ak và aj
=> ak-aj chia hết cho 10
=> dpcm
Một số tự nhiên luôn có 1 trong 10 số dư khi chia cho 10
=> trong 11 số tự nhiên bất kì thì luôn có 2 số có cùng số dư trong phép chia cho 10
=> trong 11 số tự nhiên bất kì luôn có 2 số có chữ số tận cùng giống nhau(đpcm)
Ta có n^5 - n = n (n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n + 1)(n - 1)(n^2 + 1) = n(n + 1)(n - 1)(n^2 + 5 - 4) = n(n + 1)(n - 1)( 5 + n^2 - 4 ) = 5n(n + 1)(n - 1) + n(n + 1)(n - 1)(n^2 - 4) = 5n(n + 1)(n - 1) + n(n - 1)(n + 1)(n - 2)(n + 2).Do n( n - 1) chia hết cho 2 (là tích của 2 số tự nhiện liên tiếp) nên 5n(n + 1)(n - 1) chia hết cho 10 (=5 nhân 2) (1). Ta có n(n - 1)(n + 1)(n - 2)(n + 2) là tích của 5 số tự nhiên liên tiếp nên nó chia hết cho 2 và 5 mà 2 và 5 nguyên tố cùng nhau nên n(n - 1)(n + 1)(n - 2)(n + 2) chia hết cho 10 (=2 nhân 5) (2). Từ (1) và (2) => điều phải chứng minh