Cho A=1/1.2+1/3.4+...+1/99.100; B=2011/51+2011/52+...+2011/100
Chứng minh rằng B/A thuộc số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
Ta có :A=1/1.2+1/3.4+...+1/99.100=1/2+1/12+...+1/9900
7/12=1/2+1/12
Vì 1/2+1/12<1/2+1/12+...+1/9900
Nên: 7/12<A (1)
Lại có:A=1/1.2+1/3.4+...+1/99.100
=1-1/2+1/3-1/4+...+1/99-1/100
=(1-1/2+1/3)+(-1/4+1/5-1/6)+...+(-1/98+1/99-1/100)
5/6=1-1/2+1/3
vì: 1-1/2+1/3 < (1-1/2+1/3)+(-1/4+1/5-1/6)+...+(-1/98+1/99-1/100)
nên 5/6 < A (2)
Từ (1) và (2) suy ra 7/12<A<5/6
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
A=1/1-1/2+1/2-1/3+1/3-1/4+...............+1/99-1/100
A=1/1-1/100
A=100/100-1/100
A=99/100
Mk ko chép đề bài
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.+.....+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A==\frac{99}{100}\)
Ta có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) > 1 / (1.2) + 1 / (3.4) = 1 / 2 + 1 / 12 = 7 / 12 (1)
Lại có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100)
= (1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 < 1 - 1 / 2 + 1 / 3 = 5 / 6 (2)
Từ (1) và (2) => 7 / 12 < A < 5 / 6
A = 1/1x2 + 1/3x4 + 1/4x5 + 1/5x6 + ..... + 1/99x100
A = 1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + .... + 1/99 - 1/100
A = 1 - 1/100
A = 99/100
Truong Quang Minh vào đây tham khảo nha:/hoi-dap/question/119017.html
Đầu tiên ta phân tích A
A = 1/1-1/2+1/3-1/4+...+1/99-1/100
sau đó chia vế A thành 2 phần
A = (1/1+1/3+...+1/99) - (1/2+1/4+...+1/100)
gọi (1/1+1/3+...+1/99) = a
gọi (1/2+1/4+...+1/100) = b
áp dụng tính chất (a-b) = (a+b) - 2b
=> A = (1/1+1+2+1/3+1/4+...+1/99+1/100) - 2(1/2+1/4+...+1/100)
=> A = (1/1+1+2+1/3+1/4+...+1/99+1/100) - (1/1+1/2+...+1/50)
=> A = 1/1-1/1+1/2-1/2+...+1/50-1/50+1/51+1/52+...+1/100
=> A = 1/51+1/52+...+1/100
vậy A / B = \(\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2011}{51}+\frac{2011}{52}+...+\frac{2011}{100}}=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{2011\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}=2011\)
mà 2011 là số nguyên => (dpcm)
>>Dat Doan hơi nhầm nè, bạn phải ghi B/A chứ ko phải A/B; thành ra mới bằng 2011 chứ nếu A/B=1/2011 đó!!!