K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2015

Đầu tiên ta phân tích A

A = 1/1-1/2+1/3-1/4+...+1/99-1/100

sau đó chia vế A thành 2 phần 

A = (1/1+1/3+...+1/99) - (1/2+1/4+...+1/100)

gọi (1/1+1/3+...+1/99) = a 

gọi (1/2+1/4+...+1/100) = b 

áp dụng tính chất (a-b) = (a+b) - 2b

=> A = (1/1+1+2+1/3+1/4+...+1/99+1/100) - 2(1/2+1/4+...+1/100) 

=> A = (1/1+1+2+1/3+1/4+...+1/99+1/100) - (1/1+1/2+...+1/50)

=> A = 1/1-1/1+1/2-1/2+...+1/50-1/50+1/51+1/52+...+1/100

=> A = 1/51+1/52+...+1/100

vậy A / B = \(\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2011}{51}+\frac{2011}{52}+...+\frac{2011}{100}}=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{2011\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}=2011\) 

mà 2011 là số nguyên => (dpcm)

23 tháng 3 2015

>>Dat Doan hơi nhầm nè, bạn phải ghi B/A chứ ko phải A/B; thành ra mới bằng 2011 chứ nếu A/B=1/2011 đó!!!

6 tháng 7 2017

a=\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{100}=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)

=>b/a=2011

6 tháng 7 2017

hình như đề : CMR : \(\frac{b}{a}\)là 1 số nguyên

Ta có :

\(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(a=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(a=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(a=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(b=\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)

\(b=2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)

\(\Rightarrow\frac{b}{a}=\frac{2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}=2011\)là 1 số nguyên ( đpcm )

21 tháng 7 2022

45854

 

212122512122

1

1

1

1123

4564

454

3546434

 

22 tháng 9 2024

xét B ta có:

B=1/1.2+1/3.4+1/5.6+...+1/99.100

B=1-1/2+1/3-1/4+1/5-1/6+...+1/99-100

B=(1+1/3+1/5+...+1/99)-(1/2+1/4+...+1/100)

B=(1+1/3+1/5+...+1/99)+(1/2+1/4+1/6+...+1/100)-2(1/2+1/4+1/6+...+1/100)

B=(1+1/2+1/3+...+1/99+1/100)-(1+1/2+1/3+1/4+...+1/50)

=>B=1/51+1/52+1/53+...+1/100

=>A/B=1/51+1/52+...+1/100:1/51+1/52+...+1/100=1 (đpcm)

Đó là cách nhanh nhất để giải nếu bn ko hỉu thì mik sẽ giải chi tiết cho

chúc bn học tốt ^-^

 

18 giờ trước (21:48)

93939393939393939×020293i4u3927483777

13 tháng 10 2018

\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\left(đpcm\right)\)

13 tháng 10 2018

Ta có : \(VT=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\)

               \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)

                \(=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{100}\right)\)

                \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+...+\frac{1}{100}\right)\) 

                 \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)\)

                   \(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)     

\(\Rightarrow\) \(ĐPCM\)

20 tháng 6 2017

a) $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}$

$=>A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1+\dfrac{1}{3}+...+\dfrac{1}{99})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100})$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}.2)$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100})-(1+\dfrac{1}{2}+...+\dfrac{1}{50})$

$=>A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}$

b) Ta có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}$

$=>A<1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$

10 tháng 5 2016

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(B=\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{100}\right)\)

\(B=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}=A\)

=>A/B=1