K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2015

a, C= 75.( 42001+42000+41999+ ... +42+41+40)+25

= \(75.\frac{4^{2002}-1}{3}+25\)

= 25.(42002-1) +25

= 25.42002

Vì 25.42002 chia hết cho 42002 nên C chia hết cho 42002

b, Vì 25 chia cho 4 dư 1 nên 25.42002 chia cho 4.42002 dư 6

Vậy C chia 42003 dư 6

28 tháng 3 2015

câu b sai rồi đáng ra phải thế này

\(\frac{25.4^{2002}}{4^{2003}}=\frac{25}{4}=6,25\)

Do đó C chia cho 42003 dư 25.42002 _ 6.42003=1

28 tháng 3 2015

Nếu mún pít cách làm ý a thì like đi

3 tháng 2 2019

Theo bài ra, ta có: \(C=75\left(4^{2001}+4^{2000}+4^{1999}+...+4^2+4+1\right)+25\)

Đặt \(S=4^{2001}+4^{2000}+4^{1999}+...+4^2+4+1\)

\(\Rightarrow4S=4^{2002}+4^{2001}+4^{2000}+...+4^3+4^2+4\)

\(\Rightarrow4S-S=4^{2002}+4^{2001}+4^{2000}+...+4^3+4^2+4-4^{2001}-4^{2000}-4^{1999}-...4^2-4-1\)

\(\Rightarrow3S=4^{2002}-1\)

\(\Rightarrow S=\dfrac{4^{2002}-1}{3}\)

Khi đó \(C=75.\dfrac{4^{2002}-1}{3}+25=\dfrac{75}{3}.\left(4^{2002}-1\right)+25=25\left(4^{2002}-1\right)+25=25\left(4^{2002}-1+1\right)=25.4^{2002}⋮4^{2002}\)

Vậy \(C⋮4^{2002}\left(đpcm\right)\)

6 tháng 5 2016

A=4+4^1+4^2+..........+4^2004

A.3=4^2007-4

\(A=\frac{\left(4^{2007}-4\right)}{3}\)

B=25.3.(42003+42002+22001+.......+42+4+1)+25 

B=25.[4.(42003+42002+22001+.......+42+4+1)-(42003+42002+22001+.......+42+4+1)]+25

B=25.[(42004+42003+42002+22001+.......+42+4)-(42003+42002+22001+.......+42+4+1)]+25

B=25.(42004-1)+25

B=25.(42004-1+1)

B=25.42004

B=25.4.42003

B=100.42003

\(\Rightarrow\)B chia hết cho 100

5 tháng 12 2016

A=75(4^2004+4^2003+...+4^24+1)+25= 75(4^2004+4^2003+...+4^24)+75+25= 
=75(4^2004+4^2003+...+4^24)+100= 75*4(4^2003+4^2002...+4^23)+100= 
= 300(4^2003+4^2002...+4^23)+100= 100[3(4^2003+4^2002...+4^23)+1] chia het cho 100.