tim so tu nhien x de bieu thuc
\(A=\frac{7.x-8}{2x-3}\)
đạt giá trị lớn nhất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5n^3-9n^2+15n-27=0\)
\(=\left(5n-9\right)\left(n^2+3\right)\)Vì \(n^2+3>1\)Nên \(5n-9=1\)( vì nếu là số nguyên tố thì chỉ có 2 ước số là 1 và chính nó )
Vậy 5n = 10 => n = 2
Với n = 2 ta có :
\(5n^3-9n^2+15n-27=7\)( nhận )
Nếu không tin bạn cứ tra bảng số nguyên tố đảm bảo có số 7
Ta có :
\(Q=\dfrac{x+1}{x-\sqrt[]{x}+1}\left(x\inℕ\right)\)
\(\Leftrightarrow Q=\dfrac{\left(x+1\right)\left(\sqrt[3]{x}+1\right)}{\left(\sqrt[3]{x}+1\right)\left(x-\sqrt[]{x}+1\right)}\)
\(\Leftrightarrow Q=\dfrac{\left(x+1\right)\left(\sqrt[3]{x}+1\right)}{\left(x+1\right)}\)
\(\Leftrightarrow Q=\sqrt[3]{x}+1\)
Để \(Q\inℕ\)
\(\Leftrightarrow\sqrt[3]{x}+1\inℕ\)
\(\Leftrightarrow\sqrt[3]{x}\inℕ\)
\(\Leftrightarrow x=\left\{x\inℕ|x=k^3;k\inℕ\right\}\)
???
15 mà, dễ vậy sao hs lớp 4 ko làm được, nếu em không phải hs lớp 4 thì nhớ để đúng nhé
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
A=7x-8/2x-3=2(7x-8)/2(2x-3)
A=7(2x-3)+5/2(2x-3)=7/2 + 5/2(2x-3)
Đặt S=5/2(2x-3)
Ta có A lớn nhất<=>B lớn nhất
Mà B </ 5/2 <=>B max=5/2
Nên A</7/2+5/2=12/2=6<=>A max=6
Dấu "=" xảy ra<=>x=2
Vậy....