Tìm x, biết
a)\(\frac{x}{5}\)= \(\frac{2}{3}\)
b)\(\frac{x}{3}-\frac{1}{2}=\frac{1}{5}\)
c)\(\frac{x}{5}+\frac{1}{2}=\frac{6}{10}\)
d)\(\frac{x-12}{4}=\frac{6}{10}\)
e)\(\frac{x+3}{15}=\frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
\( a)5\left( {x - 3} \right) - 4 = 2\left( {x - 1} \right) + 7\\ \Leftrightarrow 5x - 15 - 4 = 2x - 2 + 7\\ \Leftrightarrow 5x - 19 = 2x + 5\\ \Leftrightarrow 5x - 2x = 5 + 19\\ \Leftrightarrow 3x = 24\\ \Leftrightarrow x = 8\\ b)\dfrac{{8x - 3}}{4} - \dfrac{{3x - 2}}{2} = \dfrac{{2x - 1}}{2} + \dfrac{{x + 3}}{4}\\ \Leftrightarrow 8x - 3 - \left( {3x - 2} \right).2 = \left( {2x - 1} \right).2 + x + 3\\ \Leftrightarrow 8x - 3 - 6x + 4 = 4x - 2 + x + 3\\ \Leftrightarrow 2x + 1 = 5x + 1\\ \Leftrightarrow 2x - 5x = 0\\ \Leftrightarrow - 3x = 0\\ \Leftrightarrow x = 0 \)
\( c)\dfrac{{2\left( {x + 5} \right)}}{3} + \dfrac{{x + 12}}{2} - \dfrac{{5\left( {x - 2} \right)}}{6} = \dfrac{x}{3} + 11\\ \Leftrightarrow 4\left( {x + 5} \right) + 3\left( {x + 12} \right) - \left[ {5\left( {x - 2} \right)} \right] = 2x + 66\\ \Leftrightarrow 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66\\ \Leftrightarrow 2x + 66 = 2x + 66\\ \Leftrightarrow 0x = 0\left( {VSN} \right)\\ \Leftrightarrow x = 0 \)
\(d)\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\\ \Leftrightarrow \dfrac{x-10}{1994}-1+\dfrac{x-8}{1996}-1+\dfrac{x-6}{1998}-1+\dfrac{x-4}{2000}-1+\dfrac{x-2}{2002}-1=\dfrac{x-2002}{2}-1+\dfrac{x-2000}{4}-1+\dfrac{x-1998}{6}-1+\dfrac{x-1996}{8}-1+\dfrac{x-1994}{10}-1\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}+\dfrac{x-2004}{8}+\dfrac{x-2004}{10}\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}-\dfrac{x-2004}{8}-\dfrac{x-2004}{10}=0\\ \Leftrightarrow \left(x-2004\right)\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}+\dfrac{1}{2000}+\dfrac{1}{2002}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}=0\right)\\ \Leftrightarrow x-2004=0\\ \Leftrightarrow x=2004\)
a, Ta có : \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}=\frac{x+7}{15}\)
=> \(3\left(2x-1\right)-5\left(x-2\right)=x+7\)
=> \(6x-3-5x+10-x-7=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
b, Ta có : \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
=> \(\frac{3\left(x+3\right)}{6}-\frac{2\left(x-1\right)}{6}=\frac{x+5}{6}+\frac{6}{6}\)
=> \(3\left(x+3\right)-2\left(x-1\right)=x+5+6\)
=> \(3x+9-2x+2-x-5-6=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(\frac{2\left(x+5\right)}{3}+\frac{x+12}{2}-\frac{5\left(x-2\right)}{6}=\frac{x}{3}+11\)
=> \(\frac{4\left(x+5\right)}{6}+\frac{3\left(x+12\right)}{6}-\frac{5\left(x-2\right)}{6}=\frac{2x}{6}+\frac{66}{6}\)
=> \(4\left(x+5\right)+3\left(x+12\right)-5\left(x-2\right)=2x+66\)
=> \(4x+20+3x+36-5x+10-2x-66=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
\(\frac{x-3}{5}-\frac{2x-1}{10}=\frac{x+1}{2}+\frac{1}{4}\)
\(< =>\frac{\left(x-3\right).4}{20}-\frac{\left(2x-1\right).2}{20}=\frac{\left(x+1\right).10}{20}+\frac{5}{20}\)
\(< =>4x-12-4x+2=10x+10+5\)
\(< =>10x=-10-10-5=-25\)
\(< =>x=-\frac{25}{10}=-\frac{5}{2}\)
\(\frac{x+3}{2}-\frac{2x-1}{3}-1=\frac{x+5}{5}\)
\(< =>\frac{\left(x+3\right).15}{30}-\frac{\left(2x-1\right).10}{30}-\frac{30}{30}=\frac{\left(x+5\right).5}{30}\)\(< =>15x+45-20x+10-30=5x+25\)
\(< =>-5x+25=5x+25< =>10x=0< =>x=0\)
\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)
\(\frac{3}{2}x-\frac{2}{3}=\frac{4}{9}\)
\(\frac{3}{2}x=\frac{4}{9}+\frac{2}{3}\)
\(\frac{3}{2}x=\frac{10}{9}\)
\(x=\frac{10}{9}:\frac{3}{2}\)
\(x=\frac{20}{27}\)
Vậy x=\(\frac{20}{27}\)
\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=1-\frac{4}{5}\)
\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=\frac{1}{5}\)
\(\frac{9}{11}-x=\frac{1}{5}\cdot\frac{-10}{11}\)
\(\frac{9}{11}-x=\frac{-2}{11}\)
\(x=\frac{9}{11}-\frac{-2}{11}\)
\(x=1\)
Vậy x=1
\(\frac{-11}{12}\cdot x+\frac{3}{4}=\frac{-1}{6}\)
\(\frac{-11}{12}\cdot x=\frac{-1}{6}-\frac{3}{4}\)
\(\frac{-11}{12}\cdot x=\frac{21}{12}\)
\(x=\frac{-21}{11}\)
Vậy x=\(\frac{-21}{11}\)
\(\frac{-5}{4}-\left(1\frac{1}{2}+x\right)=4,5\)
\(\frac{3}{2}+x=\frac{-5}{4}-\frac{9}{2}\)
\(\frac{3}{2}+x=\frac{23}{4}\)
\(x=\frac{17}{4}\)
Vậy x=\(\frac{17}{4}\)
\(\left(\frac{3}{4}-x:\frac{2}{15}\right)\cdot\frac{1}{5}=-2,6\)
\(\frac{3}{4}-x:\frac{2}{15}=\frac{-13}{5}:\frac{1}{5}\)
\(\frac{3}{4}-x:\frac{2}{15}=-13\)
\(x:\frac{2}{15}=\frac{3}{4}-\left(-13\right)\)
\(x:\frac{2}{15}=\frac{45}{4}\)
\(x=\frac{3}{2}\)
Vậy x=\(\frac{3}{2}\)
\(3-\left(\frac{1}{6}-x\right)\cdot\frac{2}{3}=\frac{2}{3}\)
\(3-\left(\frac{1}{6}-x\right)=\frac{2}{3}:\frac{2}{3}\)
\(3-\left(\frac{1}{6}-x\right)=1\)
\(\frac{1}{6}-x=2\)
\(x=\frac{1}{6}-2\)
\(x=\frac{-11}{6}\)
Vậy x=\(\frac{-11}{6}\)
\(\left(1-2x\right)\cdot\frac{4}{5}=\left(-2\right)^3\)
\(1-2x=\frac{-1}{10}\)
\(2x=1-\frac{-1}{10}\)
\(2x=\frac{11}{10}\)
\(x=\frac{11}{20}\)
Vậy x=\(\frac{11}{20}\)
\(\frac{1}{6}-\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{1}{8}\)
\(\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{7}{12}\)
\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{7}{12}\) \(\frac{1}{2}x-\frac{1}{3}=\frac{-7}{12}\)
\(\frac{1}{2}x=\frac{11}{12}\) \(\frac{1}{2}x=\frac{-1}{4}\)
\(x=\frac{11}{6}\) \(x=\frac{-1}{2}\)
Vậy \(x\in\left\{\frac{11}{6};\frac{-1}{2}\right\}\)
\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)
\(\frac{3}{2}x=\frac{4}{9}+\frac{6}{9}\)
\(\frac{3}{2}x=\frac{10}{9}\)
\(x=\frac{10}{9}:\frac{3}{2}\)
\(x=\frac{20}{27}\)
tk mình đi mình làm nốt cho hjhj ^^
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)